Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 8: Các quy tắc tính xác suất nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính xác suất của biến cố hợp

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 2: Thông hiểu

    Số cách chọn học sinh đi trực

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 3: Vận dụng

    Xác định số cách lập tổ công nhân

    Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?

    Ta có:

    Số cách chọn 2 nữ làm tổ trưởng và tổ phó là A_{15}^{2} cách.

    Số cách chọn 3 công nhân còn lại là nữ là: C_{13}^{3} cách.

    Số cách chọn 3 công nhân còn lại trong 18 công nhân là C_{18}^{3} cách.

    Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:

    A_{15}^{2}.\left( C_{18}^{3} - C_{13}^{3}
ight) = 111300.

  • Câu 4: Thông hiểu

    Tính xác suất lấy được cả 3 viên bi đỏ

    Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{16}^3 = 560

    B là biến cố "3 viên bi lấy được đầu màu đỏ"

    => n\left( B ight) = C_3^3 = 1

    => Xác suất lấy được cả 3 viên bi đỏ là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{1}{{560}}

  • Câu 5: Thông hiểu

    Chọn đáp án chính xác

    Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi N_{k} là biến cố sản phẩm được kiểm tra lần thứ k thuộc loại không đạt, k \in \left\{ 1;2;3;4 ight\}. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các N_{k}?

    Mô tả đúng là:

    N_{1}N_{2}N_{3}\overline{N_{4}} +
N_{1}N_{2}\overline{N_{3}}N_{4} + N_{1}\overline{N_{2}}N_{3}N_{4} +
\overline{N_{1}}N_{2}N_{3}N_{4}

  • Câu 6: Nhận biết

    Chọn khẳng định đúng

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 7: Thông hiểu

    Tính xác suất của biến cố

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Kết quả thuận lợi cho biến cố "3 sinh viên vào cù môt quán" là (1;1;1),(2;2;2),(3;3;3)

    Vậy xác suất của biến cố này là \frac{3}{27} = \frac{1}{9}

  • Câu 8: Nhận biết

    Tính số cách sắp xếp 4 người vào bàn tròn

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 9: Vận dụng cao

    Điền kết quả vào chỗ trống

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Theo bài ra ta có tổng số viên bi trong hộp là x + 8;\left( x \in \mathbb{N}^{*}
ight)

    Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là n(\Omega) = C_{x + 8}^{3}

    Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: n(A) =
C_{5}^{1}.C_{3}^{1}.C_{x}^{1} = 15x

    => Xác suất lấy được 3 viên bi có đủ 3 màu là:

    P(A) = \frac{45}{182}

    \Leftrightarrow \frac{15x}{C_{x +
8}^{3}} = \frac{45}{182}

    \Leftrightarrow \frac{90x}{(x + 6)(x +
7)(x + 8)} = \frac{45}{182}

    \Leftrightarrow x^{3} + 21x^{2} - 218x +
336 = 0

    \Leftrightarrow x = 6(tm)

    Do đó trong hộp có 14 viên bi và n(\Omega) = C_{14}^{3}

    Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ

    Suy ra \overline{B} là biến cố 3 viên bi lấy được đều là bi đỏ.

    Số kết quả thuận lợi cho \overline{B} là: n\left( \overline{B} ight) =
C_{5}^{3}

    Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:

    P = P(B) = 1 - P\left( \overline{B}
ight)

    = 1 - \frac{n\left( \overline{B}
ight)}{n(\Omega)} = 1 - \frac{C_{5}^{3}}{C_{14}^{3}} =
\frac{177}{182}

  • Câu 10: Nhận biết

    Tính xác suất của biến cố

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 11: Vận dụng

    Chọn đáp án đúng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

     Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 12: Nhận biết

    Mô tả không gian mẫu

    Tung một đồng xu hai lần liên tiếp. Tập hợp không gian mẫu là:

    Không gian mẫu là: \Omega = \left\{
SS;SN;NS;NN ight\}.

  • Câu 13: Thông hiểu

    Số sách sắp xếp các quyển sách

    Trong tủ sách có tất cả 10 cuốn sách. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:

    Coi quyển sách thứ nhất và quyển sách thứ hai thành một quyển sách

    => Khi đó ta có 9 quyển sách

    Hoán vị hai quyển sách ban đầu ta có 2! = 2 cách

    Sắp xếp 9 quyển sách vào 9 vị trí =>  Có 9! cách

    => Có 2.9! = 725760 cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:

  • Câu 14: Thông hiểu

    Số cách sắp xếp 6 người ngồi xung quanh một bàn tròn

    Có bao nhiêu cách xếp 6 người ngồi xung quanh một bàn tròn có 6 chỗ, hai cách ngồi được coi là như nhau nếu có thể nhận được từ cách kia bằng cách quay bàn đi một góc nào đó?

    Vì bàn tròn ghế không có sắp xếp thứ tự.

    Ta chọn một người ngồi ở một vị trí trong 6 chỗ làm mốc.

    Xếp 5 người còn lại vào 5 vị trí trống còn lại ta được 5! = 120 cách

    Vậy ta có: 1 . 120 = 120 cách để sắp xếp 6 người ngồi vào bàn tròn 6 chỗ

  • Câu 15: Vận dụng

    Tính xác suất để tổng số chấm trên hai mặt chia hết cho 3

    Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6.6 = 36

    Giả sử N là biến cố " Tổng số chấm trên hai mặt chia hết cho 3" 

    Trường hợp 1: Số chấm xuất hiện trong hai lần gieo là giống nhau

    (3; 3), (6; 6)

    Trường hợp 2: Số chấm xuất hiện trong hai lần gieo là khác nhau

    (1; 2), (1; 5); (2; 4), (3; 6), (4; 5)

    Mỗi khả năng xảy ra có 2 hoán vị nên số phần tử của biến cố là 10 khả năng xảy ra.

    => Số khả năng xảy ra của biến cố N là: 10 + 2 = 12 

    => Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là: P\left( N ight) = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 16: Thông hiểu

    Tính xác suất P

    Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?

    + Gọi số tự nhiên có 6 chữ số là \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} .

    Chọn a_{1} : có 9 cách.

    Chọn a_{2} : có 10 cách.

    Chọn a_{3} : có 10 cách.

    Chọn a_{4} : có 10 cách.

    Chọn a_{5} : có 10 cách.

    Chọn a_{6} : có 10 cách.

    Suy ra số các phần tử của S là: 9.10^{5} cách.

    Chọn ngẫu nhiên một số từ S \Rightarrow
n(\Omega) = 9.10^{5}.

    + Gọi A là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".

    TH1: a_1= 1.

    Có 5 vị trí để xếp số 0.

    Và có A_{8}^{4} cách chọn 4 vị trí còn lại.

    Suy ra có: 5.A_{8}^{4} = 8400 số.

    TH2: a_1 = 2,\ldots,9

    Chọn a_{1}: có 8 cách.

    Xếp hai số 0 và 1 có: A_{5}^{2} =
20 cách.

    Xếp vào 3 vị trí còn lại có: A_{7}^{3} =
210 cách.

    Suy ra có: 8.20.210 = 33600 số.

    \Rightarrow n(A) = 8400 + 33600 =
42000

    \Rightarrow P(A) = \frac{n(A)}{n(\Omega)}
= \frac{42000}{900000} = \frac{7}{150}.

  • Câu 17: Nhận biết

    Số cách xếp đặt thứ tự biểu diễn của các ban nhạc

    Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.

     Theo bài ra ta có 5 ban nhạc đến từ các trường

    Chọn ban nhạc Nha Trang biểu diễn đầu tiên

    => Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách

    => Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.

  • Câu 18: Nhận biết

    Mô tả không gian mẫu

    Em hãy mô tả không gian mẫu của phép thử gieo một con xúc xắc là:

    Không gian mẫu của phép thử gieo một con xúc xắc cân đối đồng chất là: \Omega = \left\{ 1;2;3;4;5;6
ight\}

  • Câu 19: Thông hiểu

    Phân tích sự đúng sai của các phát biểu

    Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .

    a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng

    b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là 0,8096 Đúng||Sai

    c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là 0,096 Sai||Đúng

    d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là 0,9904 Đúng||Sai

    Đáp án là:

    Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .

    a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng

    b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là 0,8096 Đúng||Sai

    c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là 0,096 Sai||Đúng

    d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là 0,9904 Đúng||Sai

    Ta có:

    A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”.

    a) Biến cố A và B là hai biến cố độc lập.

    b) Vì hai biến cố A và B là hai biến cố độc lập nên P(AB) = 0,92.0,88 = 0,8096.

    c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi là:

    P\left( \overline{AB} ight) = 0,08.0,12
= 0,0096.

    d) Xác suất để có ít nhất một trong hai bạn đạt điểm giỏi là:

    P(A \cup B) = P(A) + P(B) -
P(AB)

    = 0,92 + 0,88 - 0,8094 =
0,9904

  • Câu 20: Thông hiểu

    Xác định số cách chọn học sinh

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong đó có 1 học sinh nam là: C_{25}^1.C_{15}^2 = 2625 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455 cách

    => Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: 2625 + 455 = 3080 cách

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo