Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Giới hạn của dãy số Kết nối tri thức

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Giới hạn của dãy số sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giới hạn?

    Tính giới hạn: \lim\frac{\sqrt{n + 1} - 4}{\sqrt{n + 1} +n}

    Hướng dẫn:

    Ta có:

    \lim\frac{\sqrt{n + 1} - 4}{\sqrt{n + 1}+ n}

    = \lim\dfrac{\sqrt{\dfrac{1}{n}+ \dfrac{1}{n^{2}}} - \dfrac{4}{n}}{\sqrt{\dfrac{1}{n} + \dfrac{1}{n^{2}}} +1} = \dfrac{0}{1} = 0

  • Câu 2: Thông hiểu
    Tính giới hạn?

    Tính giá trị của giới hạn sau \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}} là?

    Hướng dẫn:

    Ta có:

    \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}}
= \lim\frac{10}{n^{2}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}}}

    Nhưng{\ \lim}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}} = 1\lim\frac{10}{n^{2}\ } = 0

    Nên \lim\frac{10}{\sqrt{n^{4} + n^{2} +
1}} = 0

  • Câu 3: Thông hiểu
    Tìm giới hạn của dãy số?

    Cho dãy số {(u}_{n}) với u_{n} = (n - 1)\sqrt{\frac{2n + 2}{n^{4} + n^{2} -1}} . Chọn kết quả đúng của \lim(u_{n}\ ) là:

    Hướng dẫn:

    Ta có: \lim\left( u_{n}\  ight) =\lim(n - 1)\sqrt{\frac{2n + 2}{n^{4} + n^{2} - 1}}

    = \lim\sqrt{\frac{(n - 1)^{2}(2n +2)}{n^{4} + n^{2} - 1}}

    = \lim\sqrt{\frac{2n^{3} - 2n^{2} - 2n +2}{n^{4} + n^{2} - 1}}

    = \lim\sqrt{\frac{\frac{2}{n} -\frac{2}{n^{2}} - \frac{2}{n^{3}} + \frac{2}{n^{4}}}{1 + \frac{1}{n^{2}}- \frac{1}{n^{4}}}}

    = 0

  • Câu 4: Thông hiểu
    Giới hạn cần tìm là?

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    Hướng dẫn:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 5: Thông hiểu
    Tính giới hạn?

    Giá trị của D =
\lim\frac{n^{3} - 3n^{2} + 2}{n^{4} + 4n^{3} + 1} bằng:

    Hướng dẫn:

    D = \lim\frac{n^{3} - 3n^{2} + 2}{n^{4}
+ 4n^{3} + 1}

    = \dfrac{\dfrac{1}{n} - \dfrac{3}{n^{2}} +\dfrac{2}{n^{4}}}{1 + \dfrac{4}{n} + \dfrac{1}{n^{4}}} = \dfrac{0}{1} =0

  • Câu 6: Nhận biết
    Tính giới hạn?

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Hướng dẫn:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 7: Vận dụng
    Tìm giới hạn?

    Giá trị của \lim\frac{a^{n}}{n!} bằng:

    Hướng dẫn:

    Gọi m là số tự nhiên thỏa: m+1>|a|.

    Khi đó với mọi n > m+1.

    Ta có: 0 < \left| \frac{a^{n}}{n!}ight| = \left| \frac{a}{1}.\frac{a}{2}\ldots\frac{a}{m} ight|.\left|\frac{a}{m + 1}\ldots\frac{a}{n} ight| < \frac{|a|^{m}}{m!}.\left(\frac{|a|}{m + 1} ight)^{n - m}

    \lim\left( \frac{|a|}{m + 1}ight)^{n - m} = 0 .

    Từ đó suy ra: \lim\frac{a^{n}}{n!} =0 .

  • Câu 8: Nhận biết
    Tìm giá trị của lim?

    Giá trị của \lim\sqrt[n]{a} với a> 0 bằng:

    Hướng dẫn:

    Nếu a=1 thì ta có luôn giới hạn bằng 1.

    • Với  a > 1 thì khi đó: a = \left\lbrack 1 +\left( \sqrt[n]{a} - 1 ight) ightbrack^{n} > n(\sqrt[n]{a} -1)

    Suy ra: 0 < \sqrt[n]{a - 1} <\frac{a}{n} ightarrow 0 nên \lim\sqrt[n]{a} = 1

    • Với 0 < a < 1 thì khi đó:  \frac{1}{a} >1 .

    Suy ra: \lim \sqrt[n]{\frac{1}{a} }=1 \Rightarrow \lim \sqrt[n]{a}=1.\frac{1}{a}>1 \Rightarrow \lim \sqrt[n]{a}=1

    Tóm lại ta luôn có: \lim\sqrt[n]{a} =1 với a > 0 .

  • Câu 9: Nhận biết
    Tìm giá trị?

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Hướng dẫn:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 10: Nhận biết
    Tìm lim?

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Hướng dẫn:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 11: Vận dụng cao
    Tính tổng T

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Hướng dẫn:

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 12: Vận dụng cao
    Tìm khẳng định đúng

    Số thập phân vô hạn tuần hoàn 0,17232323... được biểu diễn bởi phân số tối giản \frac{m}{n}. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Ta có:

    \begin{matrix}
  0,17232323.... \hfill \\
   = 0,17 + 23.\left( {\dfrac{1}{{{{10}^4}}} + \dfrac{1}{{{{10}^6}}} + \dfrac{1}{{{{10}^8}}} + ...} ight) \hfill \\ 
\end{matrix}

    \begin{matrix}
   = \dfrac{{17}}{{100}} + 23.\dfrac{{\dfrac{1}{{10000}}}}{{1 - \dfrac{1}{{100}}}} = \dfrac{{17}}{{100}} + \dfrac{{23}}{{100.99}} \hfill \\
   = \dfrac{{1706}}{{9900}} = \dfrac{{853}}{{4950}} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}
m = 853 \\
n = 4950 \\
\end{matrix} \Rightarrow 2^{12} < T = 4097 < 2^{13} ight.

  • Câu 13: Vận dụng
    Tính giới hạn hàm số

    Kết quả của giới hạn \lim\frac{2^{n + 1} + 3n + 10}{3n^{2} - n +
2}

    Hướng dẫn:

    Ta có: 2^{n} = \sum_{k =
0}^{n}C_{n}^{k}

    \Rightarrow 2^{n} \geq C_{n}^{3} =
\frac{n(n - 1)(n - 2)}{6}\sim\frac{n^{3}}{6}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.. Khi đó:

    \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2} -n + 2} = \lim\left\lbrack \dfrac{2^{n}}{n^{2}}.\dfrac{2 + 3\left(\dfrac{n}{2^{n}} ight) + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} ightbrack = + \infty

    (vì \left\{ \begin{matrix}\lim\left\lbrack 2 + 3\left( \dfrac{n}{2^{n}} ight) + 10.\left(\dfrac{1}{2} ight)^{n} ightbrack = \dfrac{2}{3} > 0 \\\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\end{matrix} ight.)

  • Câu 14: Vận dụng
    Tính giới hạn

    Kết quả của giới hạn \lim\left\lbrack \frac{\sqrt{3n} + ( -
1)^{n}.cos3n}{\sqrt{n} - 1} ightbrack bằng:

    Hướng dẫn:

    Ta có

    \lim\left\lbrack \frac{\sqrt{3n} + ( -1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    = \lim\left\lbrack\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack + \lim\left\lbrack \frac{(- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    Khi đó ta có:

    \lim\left\lbrack
\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack = \frac{\sqrt{3}}{1} =
\sqrt{3}

    0 \leq \left| \frac{( -1)^{n}.\cos3n}{\sqrt{n} - 1} ight| \leq \frac{1}{\sqrt{n} - 1}ightarrow 0 \Rightarrow \lim\frac{( - 1)^{n}.\cos3n}{\sqrt{n} - 1} =0

    Vậy \lim\left\lbrack \frac{\sqrt{3n} + (- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack = \sqrt{3}

  • Câu 15: Thông hiểu
    Tính giới hạn

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Hướng dẫn:

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (27%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Kết nối tri thức với cuộc sống

Xem thêm