Tính cosin góc giữa hai đường thẳng SC và HD
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; biết AB = BC = 4a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi H là trung điểm của AB, biết khoảng cách từ C đến mặt phẳng (SHD) bằng . Tính cosin góc giữa hai đường thẳng SC và HD.

Ta có:
Kẻ tại K, ta có:
Ta có:
Do đó tam giác CHK vuông cân tại K
Tam giác BHC vuông tại B nên
Mà
Gọi M, E lần lượt là giao điểm của HD với AC và BC.
Khi đó AEBD là hình bình hành nên EB = AD = 4a => EC = 10a
Ta có: AD // EC
Trong mặt phẳng (ABCD), kẻ CN song song HD, với . Khi đó góc giữa hai đường thẳng SC và HD bằng góc giữa SC và CN.
Ta có:
Áp dụng định lý côsin trong tam giác SCN, ta có:
Vậy
