Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 1: Hàm số lượng giác và phương trình lượng giác nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm các cung có điểm cuối trùng nhau

    Cho bốn cung (trên một đường tròn định hướng) \alpha = - \frac{5\pi}{6};\beta =\frac{\pi}{3};\gamma = \frac{25\pi}{3};\delta =\frac{19\pi}{6}các cung nào có điểm cuối trùng nhau?

    Ta có:

    \delta - \alpha = \frac{19\pi}{6} +\frac{5\pi}{6} = 4\pi

    => \delta\alpha có điểm cuối trùng nhau

    \gamma - \beta = \frac{25\pi}{3} -\frac{\pi}{3} = 8\pi

    => \beta\gamma có điểm cuối trùng nhau.

  • Câu 2: Nhận biết

    Tìm khẳng định đúng

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?

    Mỗi đường tròn định hướng có bán kính R =1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 3: Thông hiểu

    Xác định khoảng đồng biến của hàm số

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 4: Nhận biết

    Chọn khẳng định sai

    Cho góc lượng giác \alpha. Trong các khẳng định sau, khẳng định nào sai?

    Ta có:

    \cos2\alpha = 2\cos^{2}\alpha - 1 = 1 -2\sin^{2}\alpha = \cos^{2}\alpha - \sin^{2}\alpha

  • Câu 5: Thông hiểu

    PT có nghiệm?

    Trong các phương trình sau có bao nhiêu phương trình có nghiệm?

    \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2};{\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2}

      Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2} có nghiệm;

    phương trình {\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2} vô nghiệm do  \frac{{1 + \sqrt 3 }}{2} > 1

  • Câu 6: Thông hiểu

    Xác định hàm số lượng giác thỏa mãn điều kiện.

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 7: Nhận biết

    Tìm đẳng thức đúng

    Trong các đẳng thức sau, đẳng thức nào đúng?

    Công thức đúng là: sin(\alpha + \pi) = -
sin\alpha

  • Câu 8: Vận dụng

    Hàm số nào là hàm số lẻ?

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 9: Nhận biết

    Có phải là 1 nghiệm

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 10: Thông hiểu

    Tính giá trị biểu thức G

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{3}{5}. Giá trị của biểu thức G = \sin\left( \alpha +\frac{\pi}{6} ight).\sin\left( \alpha - \frac{\pi}{6}ight)

    Ta có:

    G = \sin\left( \alpha + \frac{\pi}{6}ight).\sin\left( \alpha - \frac{\pi}{6} ight)

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}- \cos2\alpha ight)

    Ta có:

    \cos2\alpha = 1 - 2\sin^{2}\alpha = 1 -2.\left( \frac{3}{5} ight)^{2} = \frac{7}{25}

    Khi đó giá trị biểu thức G là:

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}
- \frac{7}{25} ight) = \frac{1}{2}\left( \frac{1}{2} - \frac{7}{25}
ight) = \frac{11}{100}

  • Câu 11: Thông hiểu

    Xác định khoảng nghịch biến của hàm số

    Hàm số y = \sin 2x nghịch biến trên khoảng nào sau đây?

     Hàm số y = \sin 2x tuần hoàn với chu kì T = \frac{{2\pi }}{2} = \pi

    Do hàm số y=\sin x nghịch biến trên \left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } ight)

    => Hàm số y = \sin{2x} nghịch biến khi 

    \begin{matrix}  \dfrac{\pi }{2} + k2\pi  < 2x < \dfrac{{3\pi }}{2} + k2\pi  \hfill \\   \Rightarrow \dfrac{\pi }{4} + k\pi  < x < \dfrac{{3\pi }}{4} + k\pi  \hfill \\ \end{matrix}

    Vậy đáp án đúng là \left( {\frac{\pi }{2};\pi } ight)

  • Câu 12: Vận dụng cao

    Đếm số giá trị m để PT có nghiệm?

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 13: Nhận biết

    Tìm tập xác định của hàm số

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 14: Vận dụng

    Xác định cosin góc C

    Cho tam giác ABC có: \cos\widehat{A} = \frac{4}{5}\cos\widehat{B} = \frac{5}{13}. Xác định \cos\widehat{C}.

    Ta có: \left\{ \begin{matrix}\cos\widehat{A} = \dfrac{4}{5} \\\cos\widehat{B} = \dfrac{5}{13} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\sin\widehat{A} = \dfrac{3}{5} \\\sin\widehat{B} = \dfrac{12}{13} \\\end{matrix} ight.

    \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} khi đó:

    \cos\widehat{C} = \cos\left\lbrack180^{0} - \left( \widehat{A} + \widehat{B} ight)ightbrack

    = - \cos\left( \widehat{A} + \widehat{B}
ight)

    = - \left(\cos\widehat{A}\cos\widehat{B} - \sin\widehat{A}\sin\widehat{B}ight)

    = - \left( \frac{4}{5}.\frac{5}{13} -
\frac{3}{5}.\frac{12}{13} ight) = \frac{16}{65}

  • Câu 15: Thông hiểu

    PT trở thành?

    Cho phương trình {\cot ^2}3x - 3\cot 3x + 2 = 0. Đặt t = \cot 3x, ta được phương trình nào sau đây? 

     Ta có: {\cot ^2}3x - 3\cot 3x + 2 = 0  trở thành {t^2} - 3t + 2 = 0.

  • Câu 16: Thông hiểu

    Tìm hàm số chẵn

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 17: Thông hiểu

    Đếm số nghiệm

    Hỏi trên \left[ {0;\frac{\pi }{2}} ight), phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 có bao nhiêu nghiệm?

     Phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \sin x = \frac{1}{2} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  \sin x = \sin \frac{\pi }{6} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\  x = \frac{\pi }{2} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết

    0 \leqslant x < \frac{\pi }{2} \Leftrightarrow \left[ \begin{gathered}  0 \leqslant \frac{\pi }{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{{5\pi }}{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{\pi }{2} + k2\pi  < \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{1}{6}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6} \hfill \\   - \frac{5}{{12}} < k <  - \frac{1}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\   - \frac{1}{4} < k < 0\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\ \end{gathered}  ight.

    Vậy phương trình có duy nhất một nghiệm trên \left[ {0;\frac{\pi }{2}} ight).

  • Câu 18: Vận dụng

    Giải PT lượng giác với sin x và cos x

    Giải phương trình {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

     Ta có: {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

       \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{\left( {\sqrt 3  + 1} ight)\sin x\cos x}}{{{{\cos }^2}x}} + \frac{{\sqrt 3 {{\cos }^2}x}}{{{{\cos }^2}x}} = 0

    \Leftrightarrow {\tan ^2}x - \left( {\sqrt 3  + 1} ight)\tan x + \sqrt 3 \; = 0

             \Leftrightarrow \left[ \begin{gathered}  \tan x = 1 \hfill \\  \tan x = \sqrt 3  \hfill \\ \end{gathered}  ight.

              \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k\pi  \hfill \\  x = \frac{\pi }{3} + k\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight).

  • Câu 19: Nhận biết

    Chọn mệnh đề sai

    Mệnh đề nào sau đây sai?

     Mệnh đề sai: \sin x = 0 \Rightarrow x = k2\pi

    Sửa lại:

    \sin x = 0 \Rightarrow x = k\pi ;(k \in \mathbb{Z})

  • Câu 20: Vận dụng cao

    Tìm giá trị lớn nhất của hàm số.

    Tính giá trị lớn nhất của hàm số y =\sqrt{1 + \frac{1}{2}cos^{2}x} + \frac{1}{2}\sqrt{5 +2sin^{2}x}

    Ta có:

    \begin{matrix}y = \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \dfrac{1}{2}\sqrt{5 + 2sin^{2}x}\hfill \\= \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \sqrt{\dfrac{5}{4} +\dfrac{1}{2}sin^{2}x}\hfill \\\end{matrix}

    Áp dụng bất đẳng thức 2\left( a^{2} +b^{2} ight) \geq (a + b)^{2}

    Do đó

    \begin{matrix}  2\left[ {\left( {1 + \dfrac{1}{2}{{\cos }^2}x} ight) + \left( {\dfrac{5}{4} + \dfrac{1}{2}{{\sin }^2}x} ight)} ight] \geqslant {y^2} \hfill \\  {y^2} \leqslant 2\left( {\dfrac{9}{4} + \dfrac{1}{2}} ight) = \dfrac{{11}}{2} \hfill \\   \Rightarrow y \leqslant \dfrac{{\sqrt {22} }}{2} \hfill \\ \end{matrix}

    Dấu bằng xảy ra khi

    \begin{matrix}  1 + \dfrac{1}{2}{\cos ^2}x = \dfrac{5}{4} + \dfrac{1}{2}{\sin ^2}x \hfill \\   \Leftrightarrow \dfrac{1}{2}\cos 2x = \dfrac{1}{4} \Rightarrow \cos 2x = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Chu kì T của hàm số lượng giác

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 22: Vận dụng

    Xác định đồ thị hàm số lượng giác

    Đồ thị hàm số y = \sin x được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    Tịnh tiến đồ thị y = cosx + 1 sang phải \frac{\pi}{2} ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2} ight) +
1

    Tiếp theo tịnh tiến đồ thị y = \cos\left(
x - \frac{\pi}{2} ight) + 1 xuống dưới một đơn vị ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2}
ight)

    VD

     

    0

  • Câu 23: Nhận biết

    Tìm số nghiệm?

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 24: Nhận biết

    Hàm số chẵn, hàm số lẻ

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 25: Vận dụng

    Rút gọn biểu thức

    Rút gọn biểu thức: S = \cos\left( \frac{\pi}{2} - x ight).sin(\pi -x) - \sin\left( \frac{\pi}{2} - x ight).cos(\pi - x) ta được:

    Ta có:

    S = \cos\left( \frac{\pi}{2} - xight).\sin(\pi - x) - \sin\left( \frac{\pi}{2} - x ight).\cos(\pi -x)

    S = \sin x.\sin x - \cos x.\cos( -x)

    S = \sin^{2}x + \cos^{2}x = 1

  • Câu 26: Thông hiểu

    Tính giá trị biểu thức

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thưc P =
\tan\left( \alpha + \frac{\pi}{4} ight).

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( \pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    P = \tan\left( \alpha + \dfrac{\pi}{4}ight) = \dfrac{\tan\alpha + \tan\dfrac{\pi}{4}}{1 -\tan\alpha.\tan\dfrac{\pi}{4}} = \dfrac{2 + 1}{1 - 2} = - 3

  • Câu 27: Thông hiểu

    Giải phương trình

    Phương trình 1 + 2\cos 2x = 0 có nghiệm là:

     Giải phương trình:

    \begin{matrix}  1 + 2\cos 2x = 0 \hfill \\   \Leftrightarrow \cos 2x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{{2\pi }}{3} + k2\pi } \\   {2x =  - \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k\pi } \\   {x =  - \dfrac{\pi }{3} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Tìm nghiệm của PT

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 29: Thông hiểu

    Tính độ dài cung tròn

    Xét đường tròn bán kính 20cm. Cung tròn có số đo 37^{0} có độ dài tương ứng là:

    Độ dài cung tròn góc \alpha (với \alpha có đơn vị là độ):

    l = \frac{R\pi\alpha}{180^{0}} =
\frac{20.\pi.37^{0}}{180^{0}} = \frac{37\pi}{9}(cm)

  • Câu 30: Thông hiểu

    Tìm nghiệm của PT cosin

    Nghiệm của phương trình 2cos (2x) =-2

    Ta có: 2 \cos 2x = -2 \Leftrightarrow \cos 2x=-1 \Leftrightarrow 2 x= \pi + k2\pi

    \Leftrightarrow x = \frac{\pi}{2} +k \pi , \, k \in \mathbb{Z}.

  • Câu 31: Nhận biết

    Tìm chu kì của hàm số lượng giác

    Tìm chu kì T của hàm số y = \sin\left( 5x- \frac{\pi}{4} ight)

    Hàm số y = sin(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \sin\left( 5x- \frac{\pi}{4} ight) tuần hoàn với chu kì T =\frac{2\pi}{5}

  • Câu 32: Nhận biết

    Xác định nghiệm của phương trình

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 33: Vận dụng cao

    Tìm khẳng định đúng

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 34: Vận dụng

    Xét tính đúng sai cho mỗi nhận định

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Phương trình \Leftrightarrow \sqrt{3}\sin x + \cos x + \sqrt{3}\cos x - \sin x = 2\sqrt{2}\sin2x

    \Leftrightarrow sin(x + \frac{\pi}{6}) +
cos(x + \frac{\pi}{6}) = \sqrt{2}sin2x

    \Leftrightarrow \sin\left( x +
\frac{7\pi}{12} ight) = sin2x

    \Leftrightarrow \left\lbrack\begin{matrix}2x = x + \dfrac{7\pi}{12} + k2\pi \\2x = \pi - x - \dfrac{7\pi}{12} + k2\pi \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{7\pi}{12} + k2\pi \\x = \dfrac{5\pi}{36} + k\dfrac{2\pi}{3} \\\end{matrix} ight..

    Do x \in (0;2\pi) nên phương trình có các nghiệm là: \frac{7\pi}{12};\
\frac{5\pi}{36};\ \frac{29\pi}{36};\ \frac{53\pi}{36}.

    Vậy tổng các nghiệm cần tính là: 3\pi.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 35: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Chọn đáp án sai

    Trong khoảng \left( {0;\frac{\pi }{2}} ight), hàm số y = \sin x - \cos x là hàm số:

    Ta thấy:

    Trên khoảng \left( {0;\frac{\pi }{2}} ight) hàm y =f(x)= \sin x đồng biến và hàm y= g(x)= - \cos x đồng biến

    => Trên \left( {0;\frac{\pi }{2}} ight) hàm số y = \sin x - \cos x đồng biến.

  • Câu 36: Nhận biết

    Tìm giá trị tham số m thỏa mãn yêu cầu bài toán

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) tuần hoàn có chu kì T =
3\pi khi

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) có nghĩa \forall
x\mathbb{\in R \Leftrightarrow}D\mathbb{= R}.

    Chu kì của hàm số T = \frac{2\pi}{| - m|}
= 3\pi \Leftrightarrow m = \pm \frac{2}{3}.

  • Câu 37: Thông hiểu

    Chọn khẳng định đúng

    Nếu \sin(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \sin(a + b) = 0 \Rightarrow a + b =
k\pi

    \Rightarrow a = - b + k\pi;\left(
k\mathbb{\in Z} ight)

    Ta lại có:

    \Rightarrow \left| \cos(a + 2b) ight|
= \left| \cos( - b + 2b + k\pi) ight|

    = \left| \cos(b + k\pi) ight| = \left|
\cos b ight|

  • Câu 38: Thông hiểu

    Tính giá trị của biểu thức

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{4}{5}\frac{\pi}{2} < \alpha < \pi. Tính giá trị của biểu thức P = \sin2(\alpha +\pi).

    Ta có:

    P = \sin2(\alpha + \pi) = \sin(2\alpha +2\pi) = \sin2\alpha = 2\sin\alpha.\cos\alpha

    Theo bài ra ta có:

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \cos\alpha < 0

    \cos^{2}\alpha = 1 - \sin^{2}\alpha =\frac{9}{25}

    \Rightarrow \cos\alpha = -
\frac{3}{5}

    => P = 2.\frac{4}{5}.\left( -
\frac{3}{5} ight) = - \frac{24}{25}

  • Câu 39: Thông hiểu

    Xác định đồ thị hàm số

    Đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị (C) của hàm số bằng cách:

    Nhắc lại lý thuyết:

    Cho (C) là đồ thị của hàm số y = f\left( x ight)p > 0, ta có:

    + Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số y = f\left( x ight) + p.

    + Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số y = f\left( x ight) - p

    + Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số y = f\left( {x + p} ight)

    + Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số y = f\left( {x - p} ight)

    Vậy đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị hàm số y = \cos x bằng cách tịnh tiến sang phải \frac{\pi }{2} đơn vị.

  • Câu 40: Vận dụng

    Tính tổng các nghiệm phương trình

    Phương trình \left( \sqrt{3}\tan x - 1 ight)\left( sin^{2}x +
1 ight) = 0 có tổng các nghiệm trên (0;\pi) bằng:

    Điều kiện xác định: \cos x eq 0
\Leftrightarrow x eq \frac{\pi}{2} + k\pi;\left( k\mathbb{\in Z}
ight)

    Do sin^{2}x + 1 > 0,\forall x \in
\mathbb{R} nên phương trình đã cho tương đương với

    \sqrt{3}\tan x - 1 = 0

    \Leftrightarrow \tan x =
\frac{1}{\sqrt{3}}

    \Leftrightarrow x = \frac{\pi}{6} +
k\pi;\left( k\mathbb{\in Z} ight)

    (0;\pi) \Rightarrow x =
\frac{\pi}{6}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo