Tìm các cung có điểm cuối trùng nhau
Cho bốn cung (trên một đường tròn định hướng)
các cung nào có điểm cuối trùng nhau?
Ta có:
=> và
có điểm cuối trùng nhau
=> và
có điểm cuối trùng nhau.
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 1: Hàm số lượng giác và phương trình lượng giác nha!
Tìm các cung có điểm cuối trùng nhau
Cho bốn cung (trên một đường tròn định hướng)
các cung nào có điểm cuối trùng nhau?
Ta có:
=> và
có điểm cuối trùng nhau
=> và
có điểm cuối trùng nhau.
Tìm khẳng định đúng
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Xác định khoảng đồng biến của hàm số
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Chọn khẳng định sai
Cho góc lượng giác
. Trong các khẳng định sau, khẳng định nào sai?
Ta có:
PT có nghiệm?
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Xác định hàm số lượng giác thỏa mãn điều kiện.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Tìm đẳng thức đúng
Trong các đẳng thức sau, đẳng thức nào đúng?
Công thức đúng là:
Hàm số nào là hàm số lẻ?
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Có phải là 1 nghiệm
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Tính giá trị biểu thức G
Cho góc
thỏa mãn
. Giá trị của biểu thức ![]()
Ta có:
Ta có:
Khi đó giá trị biểu thức G là:
Xác định khoảng nghịch biến của hàm số
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Đếm số giá trị m để PT có nghiệm?
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Tìm tập xác định của hàm số
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Xác định cosin góc C
Cho tam giác ABC có:
và
. Xác định
.
Ta có:
Mà khi đó:
PT trở thành?
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Tìm hàm số chẵn
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Đếm số nghiệm
Hỏi trên
, phương trình
có bao nhiêu nghiệm?
Phương trình
Theo giả thiết
Vậy phương trình có duy nhất một nghiệm trên .
Giải PT lượng giác với sin x và cos x
Giải phương trình ![]()
Ta có:
Chọn mệnh đề sai
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Tìm giá trị lớn nhất của hàm số.
Tính giá trị lớn nhất của hàm số ![]()
Ta có:
Áp dụng bất đẳng thức
Do đó
Dấu bằng xảy ra khi
Chu kì T của hàm số lượng giác
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Xác định đồ thị hàm số lượng giác
Đồ thị hàm số
được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:
Ta có:
Tịnh tiến đồ thị y = cosx + 1 sang phải ta được đồ thị hàm số
Tiếp theo tịnh tiến đồ thị xuống dưới một đơn vị ta được đồ thị hàm số
VD
0
Tìm số nghiệm?
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Hàm số chẵn, hàm số lẻ
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số y = sinx là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số y = x.cosx là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số là hàm số chẵn
Rút gọn biểu thức
Rút gọn biểu thức:
ta được:
Ta có:
Tính giá trị biểu thức
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Giải phương trình
Phương trình
có nghiệm là:
Giải phương trình:
Tìm nghiệm của PT
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Tính độ dài cung tròn
Xét đường tròn bán kính
. Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Tìm nghiệm của PT cosin
Nghiệm của phương trình 2cos (2x) =-2
Ta có:
.
Tìm chu kì của hàm số lượng giác
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Xác định nghiệm của phương trình
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Tìm khẳng định đúng
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Xét tính đúng sai cho mỗi nhận định
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Phương trình
.
Do nên phương trình có các nghiệm là:
.
Vậy tổng các nghiệm cần tính là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Mệnh đề nào sau đây là đúng?
Chọn đáp án sai
Trong khoảng
, hàm số
là hàm số:
Ta thấy:
Trên khoảng hàm
đồng biến và hàm
đồng biến
=> Trên hàm số
đồng biến.
Tìm giá trị tham số m thỏa mãn yêu cầu bài toán
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Chọn khẳng định đúng
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Ta lại có:
Tính giá trị của biểu thức
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Theo bài ra ta có:
=>
Xác định đồ thị hàm số
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Tính tổng các nghiệm phương trình
Phương trình
có tổng các nghiệm trên
bằng:
Điều kiện xác định:
Do nên phương trình đã cho tương đương với
Vì
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: