Giải phương trình lượng giác
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 1: Hàm số lượng giác và phương trình lượng giác nha!
Giải phương trình lượng giác
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Chọn khẳng định đúng
Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?
Trên đường tròn định hướng, góc hình học có phân biệt điểm đầu
và điểm cuối
là góc lượng giác.
Tìm tập giá trị nguyên của tham số m
Có bao nhiêu giá trị nguyên của tham số m để hàm số
xác định trên tập số thực?
Hàm số đã cho xác định khi
Kết hợp với điều kiện m là số nguyên
=> m = {-4; -3; ... ; 2; 3}
Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.
Tính tổng số đo ba góc nhọn
Cho ba góc nhọn thỏa mãn
. Tính tổng số đo ba góc nhọn.
Ta có:
Tính giá trị của biểu thức
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Tính giá trị biểu thức
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Chọn kết luận đúng
Cho hàm số
. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Tính giá trị biểu thức P
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tính giá trị biểu thức
Tính giá trị ![]()
Ta có:
Tìm khẳng định sai
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Tìm nghiệm PTLG
Phương trình lượng giác
có nghiệm là ?
Ta có:
Tính số đo radian
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được:
Tập xác định D của hàm số
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Giải phương trình lượng giác
Tìm tập nghiệm của phương trình
?
Điều kiện:
Ta có:
Kết hợp với điều kiện suy ra phương trình có nghiệm
Vậy phương trình có tập nghiệm là:
Giải PT
Giải phương trình
?
Ta có và .
Do đó phương trình
Xét nghiệm .
Vậy phương trình có nghiệm .
Hàm số chẵn, hàm số lẻ
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Tính AB - OI
Biểu diễn hai nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác như sau:

Tính
với I là hình chiếu vuông góc của B trên OA bằng:
=>
Rút gọn biểu thức
Rút gọn biểu thức:
ta được:
Ta có:
Chọn mệnh đề đúng?
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Giải phương trình lượng giác
Phương trình
có nghiệm là:
Giải phương trình:
Tìm m để PT có nghiệm
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Hàm số nào là hàm số chẵn?
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Tìm điều kiện của tham số m thỏa mãn điều kiện
Điều kiện để phương trình
có nghiệm là:
Điều kiện để phương trình có nghiệm là
Vậy thì phương trình đã cho có nghiệm.
Khẳng định đúng?
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Tìm giá trị nguyên của m để phương trình có nghiệm
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Tìm khoảng đồng biến của hàm số
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Xác định nghiệm x nằm trong khoảng cho trước
Phương trình
có nghiệm thỏa mãn x nằm trong khoảng
là:
Giải phương trình:
Do =>
thỏa mãn
Công thức nào đúng
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Xác định nghiệm của phương trình
Nghiệm của phương trình
là
Ta có:
Tính giá trị biểu thức D
Tính ![]()
Ta có:
Đổi số đo góc
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =
Tìm tích ab?
Gọi
là nghiệm trong khoảng
của phương trình
, nếu biểu diễn
với a, b là hai số nguyên và
là phân số tối giản thì a.b bằng bao nhiêu?
Phương trình .
Với .
Suy ra a =11 và b = 6 .
Vậy a.b=66.
Ghi đáp án vào ô trống
Chu kì của hàm số
là
. Giá trị của k là:
Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).
Chu kì của hàm số
là
. Giá trị của k là:
Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).
Ta có:
Hàm số trên có chu kì là
Vậy .
Tìm điều kiện xác định của hàm số
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Giải phương trình lượng giác
Giải phương trình: ![]()
Giải phương trình:
Xác định hàm số lượng giác
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Tìm tập xác định của hàm số
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Chọn đáp án đúng
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Xác định đồ thị hàm số lượng giác
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Xác định hàm số chẵn
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: