Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Hai đường thẳng song song KNTT

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Hai đường thẳng song song sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm đường thẳng song song với giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tìm đường thẳng song song với giao tuyến hai mặt phẳng (SAB)(SCD)?

    Hướng dẫn:

    Hình vẽ minh họa

    Xét hai mặt phẳng (SAB)(SCD) ta có:

    S là điểm chung

    \left\{ \begin{matrix}
AB//CD \\
AB \subset (SAB) \\
CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow d = (SAB) \cap (SCD) với d là đường thẳng đi qua S và song song với AB,CD.

  • Câu 2: Nhận biết
    Tìm vị trí tương đối của hai đường thẳng

    Có bao nhiêu vị trí tương đối của hai đường thẳng phân biệt mn trong không gian?

    Hướng dẫn:

    Có 3 vị trí tương đối có thể có giữa hai đường thẳng phân biệt mn là:

     

    • m cắt n

    • m song song với n

    • m chéo nhau với n

     

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho tứ diện MNPQ. Gọi GE lần lượt là trọng tâm của tam giác MNQMNP. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử O là trung điểm của MN.

    Ta có: \frac{GO}{OQ} = \frac{OE}{OC} =
\frac{1}{3}

    \Rightarrow GE//PQ

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Cho hình thang ABCD AD//BC,AD = 3BC. Lấy điểm S bất kì, S
otin (ABCD). Gọi M,N lần lượt là trung điểm của AB,AC, G là trọng tâm tam giác (SAD). Khi đó giao tuyến được tạo bởi mặt phẳng (GMN) với các mặt của S.ABCD là hình gì?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi (GMN) \cap (SAD) = d

    Xét ba mặt phẳng (GMN);(SAD);(ABCD).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AD,MN đồng quy hoặc đôi một song song. Mà AD//MN \Rightarrow d//AD

    Giả sử: d cắt SA;SD lần lượt tại E;F.

    Khi đó thiết diện của hình chóp S.ABCD cắt bởi (GMN) là hình thang MNFE.

    Ta có:

    MN = \frac{AD + BC}{2} = \frac{AD +
\frac{1}{3}AD}{2} = \frac{2}{3}AD

    Ta có: G là trọng tâm tam giác SAD

    => MN = EF

    => Hình thang MNFE là hình bình hành.

  • Câu 5: Thông hiểu
    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp S.MNPQ có đáy MNPQ là hình bình hành. Xác định giao tuyến của hai mặt phẳng (SMQ)(SNP):

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi (SMQ) \cap (SNP) = d

    Khi đó d đi qua S.

    Xét ba mặt phẳng (SMQ),(SNP);(MNPQ).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d;MQ;NP.

    Theo định lí về giao tuyến của ba mặt phẳng thì d;MQ;NP đồng quy hoặc đôi một song song.

    MQ//NP \Rightarrow d//MQ

  • Câu 6: Thông hiểu
    Tính tỉ số giữa hai cạnh SQ, SA

    Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy nhỏ là BC, lấy điểm P \in SD, sao cho PD = 2SP. Gọi Q = SA \cap (PBC) . Tính tỉ số giữa hai cạnh SQSA.

    Hướng dẫn:

    Hình vẽ minh họa

    Xét ba mặt phẳng (PBC);(SAD);(ABCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là PQ;AD;BC.

    Theo định lí về giao tuyến của ba mặt phẳng thì PQ;AD;BC đồng quy hoặc đôi một song song.

    AD//BC \Rightarrow PQ//AD

    Do đó \frac{SQ}{SA} = \frac{SP}{SD} =
\frac{1}{3}

  • Câu 7: Thông hiểu
    Điền đáp án vào ô trống

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

  • Câu 8: Nhận biết
    Tìm đường thẳng song song với IJ

    Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Lấy hai điểm I;J lần lượt thuộc SA;SC sao cho SI = IA;JS = JC. Đường thẳng IJ song song với:

    Hướng dẫn:

    Hình vẽ minh họa

    Xét tam giác SAC có:

    SI = IA

    JS = JC

    => IJ là đường trung bình => IJ//AC.

  • Câu 9: Nhận biết
    Chọn mệnh đề đúng

    Chọn mệnh đề đúng trong các mệnh đề dưới đây:

    Hướng dẫn:

    Theo định nghĩa về vị trí tương đối của hai đường thẳng trong không gian thì đáp án đúng là: " Hai đường thẳng chéo nhau thì không có điểm chung."

  • Câu 10: Thông hiểu
    Mệnh đề nào sau đây đúng

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.

    Vậy khẳng định đúng là: Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Cho hình chóp S.ABCDG,E lần lượt là trọng tâm tam giác SADSCD. Lấy các điểm H,K lần lượt là trung điểm của ABBC. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi I là trung điểm của SD.

    Xét tam giác ACI có: \frac{IG}{IA} = \frac{IE}{IC} =
\frac{1}{3}

    Theo định lí đảo của định lí Thales, ta có GE//AC (1).

    Mặt khác HK là đường trung bình của tam giác ABC

    => HK//AC (2)

    Từ (1) và (2) ta có HK//GE.

  • Câu 12: Vận dụng
    Xác định tỉ số AJ và DJ

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O. Lấy G là trọng tâm tam giác SAD, M \in
SB sao cho MS = MB. Xác định tỉ số \frac{AJ}{DJ} với J = AD \cap (GOM).

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi H là trung điểm SD.

    Ta có: \left\{ \begin{matrix}
OB = OD \\
MS = MD \\
\end{matrix} ight. => OM là đường trung bình tam giác SDB

    \Rightarrow OM//SD (tính chất đường trung bình).

    Do đó qua G kẻ đường thẳng song song SD cắt AD tại J

    => J = AD \cap (GOM).

    Mà theo giả thiết G là trọng tâm tam giác SAD

    \frac{AG}{GH} = \frac{AJ}{GJ} =
2

  • Câu 13: Vận dụng
    Tìm giao tuyến của mặt phẳng và các mặt hình chóp

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của BC. Mặt phẳng (\alpha) là mặt phẳng đi qua M song song với BDSC. Giao tuyến của (\alpha) với các mặt của hình chóp là hình:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có:

    MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có:

    MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2)

    => Giao tuyến của (\alpha) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 14: Thông hiểu
    Tìm giao tuyến giữa mặt phẳng và các mặt hình chóp

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in SB; (M
eq B;M eq S). Khi đó, giao tuyến của mặt phẳng (MAD) với các mặt của hình chóp là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MAD) \cap (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (MAD) \cap (SBC) =
Mx//AD//BC

    Trong mặt phẳng (SBC) giả sử SC \cap Mx = N

    Do đó ADMN là giao tuyến của mặt phẳng (MAD) với các mặt của hình chóp.

    \left\{ \begin{matrix}
AD//MN \\
MN < AD \\
\end{matrix} ight. nên ADMN là hình thang.

  • Câu 15: Nhận biết
    Tìm đường thẳng song song với giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng (SAD)(SBC)?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD);BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua Sd//AD//BC.

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) song song với đường thẳng AD.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Kết nối tri thức với cuộc sống

Xem thêm