Tìm khẳng định sai
Cho hình chóp
có
là trung điểm của đoạn thẳng
. Tìm khẳng định sai dưới đây.
Hình vẽ minh họa
Ta có: và
không đồng phẳng nên khẳng định
và
cắt nhau là sai.
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 4: Quan hệ song song trong không gian nha!
Tìm khẳng định sai
Cho hình chóp
có
là trung điểm của đoạn thẳng
. Tìm khẳng định sai dưới đây.
Hình vẽ minh họa
Ta có: và
không đồng phẳng nên khẳng định
và
cắt nhau là sai.
Xác định thiết diện
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?
Hình vẽ minh họa

Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC
=>
2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung
=> Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.
Vậy
Ta có
Mặt khác
Vậy thiết diện là hình thang cân IJKH.
Chọn mệnh đề sai
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Chọn đáp án đúng
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Vì điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có
mặt.
Chọn khẳng định đúng
Cho hình chóp tứ giác
. Gọi
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Xét có
lần lượt là trung điểm
=> là đường trung bình của
=> mà
Chọn mệnh đề đúng
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm của tam giác
và
. Mệnh đề nào dưới đây đúng?
Hình vẽ minh họa
Giả sử là trung điểm của
.
Ta có:
Tính số cạnh của bát giác
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Xác định các giao tuyến của tứ diện và mặt phẳng cho trước
Cho tứ diện
. Lấy
sao cho
. Giả sử
là mặt phẳng qua
song song với
. Xác định các giao tuyến của tứ diện
và mặt phẳng
. Hình tạo bởi các giao tuyến đó là hình gì?
Giả sử cắt các mặt của tứ diện
và
theo hai giao tuyến
và
.
Ta có:
Theo định lí Ta – lét ta có:
=> là hình bình hành
Do đó hình tạo bởi các giao tuyến của tứ diện và mặt phẳng
là hình bình hành
.
Tìm giao điểm đường thẳng với mặt phẳng
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Tìm hình chiếu của điểm N qua phép chiếu song song
Cho hình chóp
có các mặt bên là tam giác đều. Gọi
là trung điểm của
, lấy
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
là:
Hình vẽ minh họa
Do các mặt bên của hình chóp là các tam giác đều nên tam giác
đều.
Gọi là trọng tâm tam giác
.
Ta có
Nên là hình chiếu song song theo phương
của
trên
.
Lại do tam giác đều nên
vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác
.
Khẳng định nào sai
Cho hình lập phương
. Khẳng định nào sau đây sai?
Ta có: luôn đúng
=> Hai mặt phẳng không song song với nhau.
Tìm khẳng định sai
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Ghi đáp án vào ô trống
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Xét tính đúng sai của các khẳng định
Cho hình chóp
có đáy là hình thang đáy lớn là
. Gọi
là trung điểm của cạnh
,
là giao điểm của cạnh
và mặt phẳng
. Các mệnh đề sau đúng hay sai?
a)
và
cắt nhau.Sai||Đúng
b)
.Đúng||Sai
c)
và
cắt nhau.Sai||Đúng
d)
và
chéo nhau. Sai||Đúng
Cho hình chóp
có đáy là hình thang đáy lớn là
. Gọi
là trung điểm của cạnh
,
là giao điểm của cạnh
và mặt phẳng
. Các mệnh đề sau đúng hay sai?
a)
và
cắt nhau.Sai||Đúng
b)
.Đúng||Sai
c)
và
cắt nhau.Sai||Đúng
d)
và
chéo nhau. Sai||Đúng
Hình vẽ minh họa
Ta có:
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Chọn đáp án đúng
Gọi
là giao tuyến của mặt phẳng
và
. Nếu đường thẳng
song song với cả hai mặt phẳng thì:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Mệnh đề nào sau đây đúng
Mệnh đề nào sau đây đúng?
Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.
Vậy khẳng định đúng là: “Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”
Tìm mặt phẳng song song với mặt phẳng
Cho hình lăng trụ
. Trọng tâm các tam giác
lần lượt là
. Tìm mặt phẳng song song với mặt phẳng
.
Theo bài ra ta có:
Các điểm lần lượt là trọng tâm các tam giác
.
.
Chứng minh tương tự
Tìm khẳng định đúng
Khẳng định nào sau đây là đúng.
Khẳng định đúng là: " Hình biểu diễn của một hình bình hành là một hình bình hành."
Tìm ba điểm thẳng hàng
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: