Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 4: Quan hệ song song trong không gian nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn khẳng định đúng

    Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?

    Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy a song song d

  • Câu 2: Thông hiểu

    Tìm giao tuyến d của hai mặt phẳng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm ADAC, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng (GMN)(BCD).

    Hình vẽ minh họa

    Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G

    => Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).

  • Câu 3: Nhận biết

    Tìm khẳng định sai

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm của SASD. Trong các khẳng định sau, khẳng định nào sai?

    Đáp án MN//BC đúng vì MN // AD do trong tam giác SADMN là đường trung bình mà BC// AD nên MN // BC

    Đáp án ON//SB đúng vì ON là đường trung bình của tam giác SBD

    Đáp án OM//SC đúng vì OM là đường trung bình của tam giác SAC

    Đáp án ON//SC sai vì giả sử ON //SCOM //SC nên MN vô lí.

  • Câu 4: Thông hiểu

    Xác định giao tuyến

    Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

     Xác định giao tuyến

    Xét (SAD) và (SBC) có:

    S là điểm chung

    AD // BC

    => Giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song với AD

  • Câu 5: Nhận biết

    Chọn đáp án đúng

    Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

    4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

  • Câu 6: Nhận biết

    Chọn hình vẽ phù hợp yêu cầu bài toán

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

  • Câu 7: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 8: Nhận biết

    Chọn đáp án đúng

    Trong không gian cho hai mặt phẳng (P)(Q) song song. Số giao điểm chung của hai mặt phẳng (P)(Q)

    Theo định nghĩa hai mặt phẳng song song.

    Đáp án cần tìm là: 0

  • Câu 9: Thông hiểu

    Tìm giao điểm đường thẳng và mặt phẳng

    Cho tứ giác ABCDO là giao điểm của AC;BD. Lấy một điểm S bất kì không thuộc (ABCD), một điểm M bất kì thuộc cạnh SC (M eqS,M eq C). Gọi K là giao điểm của SOAM. Khi đó giao điểm của SD và mặt phẳng (ABM) là:

    Hình vẽ minh họa

    Chọn mặt phẳng phụ (SBD) chứa SD.

    Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).

    Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).

    Trong mặt phẳng ( ABCD) có O = AC \capBD

    Trong mặt phẳng (SAC) có K = AM \capSO

    Suy ra BK = (SBD) \cap (ABM)

    Trong mặt phẳng (SBD) gọi N = SD \capBK và do BK \subset(ABM)

    N = SD \cap (ABM)

  • Câu 10: Nhận biết

    Chọn khẳng định đúng

    Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. Khẳng định nào sau đây là đúng?

     Khẳng định đúng: "Ba giao tuyến này hoặc đồng quy hoặc đôi một song song."

  • Câu 11: Thông hiểu

    Xác định tính đúng sai của các phát biểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 12: Vận dụng

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 13: Thông hiểu

    Chọn mệnh đề sai

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O, M \in
SC,SM = MC. Mệnh đề nào sau đây là mệnh đề sai?

    Hình vẽ minh họa

    Ta có:

    OM//SA \Rightarrow
OM//(SAB)

    OM//SA \Rightarrow
OM//(SAD)

    (BDM) \cap (SAC) = OM

    OM//(SBD) là đáp án sai.

  • Câu 14: Vận dụng

    Tìm giao tuyến giữa hai mặt phẳng

    Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    => MN // AB

    Ta lại có \left( {MNO} ight) \cap \left( {ABCD} ight) = O

    => Giao tuyến của hai măt phẳng (MNO) và (ABCD) là đường thẳng đi qua O và song song với AB.

  • Câu 15: Nhận biết

    Chọn mệnh đề sai

    Mệnh đề nào trong các mệnh đề sau đây là sai?

    Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.

  • Câu 16: Nhận biết

    Tìm mệnh đề sai

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 17: Thông hiểu

    Xác định hình chiếu song song của điểm M

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?

    Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.

    Giả sử đường thẳng này cắt SD tại điểm I.

    Khi đó MI là đường trung bình của tam giác SCD

    => I là trung điểm của SD.

    Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.

  • Câu 18: Thông hiểu

    Tìm kết luận sai

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 19: Thông hiểu

    Chọn phát biểu đúng

    Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Gọi O là tâm hình bình hành ABCD

    Ta có: 2NC = SN \Rightarrow \frac{{NC}}{{SC}} = \frac{1}{3}

    M là trọng tâm tam giác BCD => \frac{{MC}}{{OC}} = \frac{2}{3}

    ABCD là hình bình hành => AO = OC

    => \frac{{MC}}{{AC}} = \frac{{MC}}{{2OC}} = \frac{2}{{2.3}} = \frac{1}{3}

    Xét tam giác SAC có:

    \frac{{MC}}{{AC}} = \frac{{NC}}{{SC}} = \frac{1}{3}

    Theo định lí Ta - lét suy ra MN // SA

  • Câu 20: Vận dụng

    Xác định hình tạo bởi các giao tuyến

    Cho hình chóp S.ABCD với đáy là hình thang ABCD, đáy lớn BC gấp đôi đáy nhỏ AD. Gọi E là trung điểm AD và O là giao điểm của AC và BE, I là một điểm thuộc đoạn OC (I khác O và C). Mặt phẳng (α) qua I song song với (SBE). Xác định hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(SBE) \cap (ABCD) = BE \\
(\alpha) \cap (ABCD) = Ix \\
\end{matrix} ight.

    => Ix//BE => Ix cắt BC tại M, AD tại Q.

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(\alpha) \cap (SBC) = Mx \\
(SBE) \cap (SBC) = SB \\
\end{matrix} ight.

    => Mx//SB

    => Mx cắt SC tại N.

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(\alpha) \cap (SAD) = Qx \\
(SBE) \cap (SAD) = SE \\
\end{matrix} ight.

    => Qx//SE

    => Qx cắt SD tại P

    Tứ giác BCDE là hình bình hành

    => CD // BE // MQ

    => CD // (α).

    Ta có: \left\{ \begin{matrix}
CD//\ (\alpha) \\
CD \subset (SCD) \\
(SCD) \cap (\alpha) = PN \\
\end{matrix} ight.

    => CD//P\ N \Rightarrow MQ//P\
N

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD là hình thang MNPQ.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo