Tính giới hạn của hàm số
Tính giới hạn của hàm số ![]()
Ta có: vì
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 5: Giới hạn. Hàm số liên tục nha!
Tính giới hạn của hàm số
Tính giới hạn của hàm số ![]()
Ta có: vì
Chọn đáp án đúng
Cho hàm số
. Hàm số
liên tục tại:
Tập xác định
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
Vậy hàm số liên tục tại x = 0
Tương tự ta có:
Vậy hàm số liên tục tại x = 1
Vậy hàm số đã cho liên tục trên tập số thực.
Tính giới hạn hàm số
Tính
.
Ta có:
Do đó
Tính số điểm gián đoạn của hàm số
Số điểm gián đoạn của hàm số
là:
Hàm số xác định trên
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy có 1 điểm gián đoạn.
Chọn khẳng định đúng
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Xét sự đúng sai của các phát biểu
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Rút gọn biểu thức A
Rút gọn biểu thức
với ![]()
Ta có:
Kết quả của giới hạn bằng bao nhiêu
Kết quả của giới hạn
bằng:
Ta có:
Tìm giới hạn hàm lượng giác
Giá trị của
bằng:
Ta có mà
Suy ra
Tính giá trị biểu thức S
Biết rằng
. Tính
?
Ta có:
Khi đó
Ghi đáp án vào ô trống
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Tính giới hạn?
Tính giá trị của giới hạn sau
là?
Ta có:
Nhưng và
Nên
Giới hạn nào không tồn tại
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Ghi đáp án vào ô trống
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Ta có:
Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm (ngày) là 600 người/ngày.
Tính giới hạn
bằng
Ta có:
Ghi đáp án vào ô trống
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Tính kết quả giới hạn
Tính giới hạn ![]()
Khi ta có:
Tính giới hạn hàm số tại một điểm
Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](/data/image/holder.png)
Ta có:
Vậy
Tính giá trị của giới hạn
Giá trị của giới hạn
là:
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: