Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 5: Giới hạn. Hàm số liên tục nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Chọn mệnh đề đúng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 2: Vận dụng cao

    Tính giới hạn

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

  • Câu 3: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Đặt I = \lim\left( \sqrt{n^{2} + a^{2}n}
- \sqrt{n^{2} + (a + 2)n + 1} \right). Xét tính đúng sai của các khẳng định sau:

    a) Ta biến đổi được I = \lim\frac{n -
1}{\sqrt{n^{2} + n} + \sqrt{n^{2} + 1}}. Sai||Đúng

    b) Nếu I = 0 thì có 3 giá trị a thỏa mãn. Sai||Đúng

    c) Nếu I = 0 thì tổng các giá trị a tìm được bằng 1. Sai||Đúng

    d) Có 2 giá trị a nguyên để I = 1. Sai||Đúng

    Đáp án là:

    Đặt I = \lim\left( \sqrt{n^{2} + a^{2}n}
- \sqrt{n^{2} + (a + 2)n + 1} \right). Xét tính đúng sai của các khẳng định sau:

    a) Ta biến đổi được I = \lim\frac{n -
1}{\sqrt{n^{2} + n} + \sqrt{n^{2} + 1}}. Sai||Đúng

    b) Nếu I = 0 thì có 3 giá trị a thỏa mãn. Sai||Đúng

    c) Nếu I = 0 thì tổng các giá trị a tìm được bằng 1. Sai||Đúng

    d) Có 2 giá trị a nguyên để I = 1. Sai||Đúng

    a) Sai: Ta biến đổi được I = \lim\frac{n
- 1}{\sqrt{n^{2} + n} + \sqrt{n^{2} + 1}}

    \sqrt{n^{2} + a^{2}n} - \sqrt{n^{2} + (a
+ 2)n + 1} \rightarrow = 0\overset{\rightarrow}{}nhân lượng liên hợp.

    Ta có \lim\left( \sqrt{n^{2} + a^{2}n} -\sqrt{n^{2} + (a + 2)n + 1} \right)= \lim\frac{\left( a^{2} - a - 2\right)n - 1}{\sqrt{n^{2} + n} + \sqrt{n^{2} + 1}}

    b) Sai: I = \lim\frac{a^{2} - a - 2 -
\frac{1}{n}}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{1}{n^{2}}}} =
\frac{a^{2} - a - 2}{2}

    Khi I = 0 \Leftrightarrow \frac{a^{2} - a- 2}{2} = 0 \Leftrightarrow a^{2} - a - 2 = 0\Leftrightarrow\left\lbrack \begin{matrix}a = - 1 \\a = 2\end{matrix} \right.

    c) Sai: Nếu I = 0 thì tổng các giá trị a tìm được bằng 1. Khi đó - 1
+ 2 = 1 \neq 0

    d) Sai: Có 2 giá trị a nguyên để I = 1

    Khi I = 1 \Leftrightarrow \frac{a^{2} - a- 2}{2} = 1\Leftrightarrow a^{2} - a - 4 = 0 \Leftrightarrow\left\lbrack \begin{matrix}a = \frac{1 - \sqrt{17}}{2} \\a = \frac{1 + \sqrt{17}}{2}\end{matrix} \right.

  • Câu 4: Thông hiểu

    Tính giá trị giới hạn

    Cho hàm số f(x) =
\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x + 2}. Tính \lim_{x ightarrow -
\infty}f(x).

    Ta có:

    \lim_{x ightarrow -
\infty}f(x)

    = \lim_{x ightarrow -
\infty}\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x +
2}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} + \sqrt{1 - \dfrac{1}{x} +\dfrac{3}{x^{2}}}}{3 + \dfrac{2}{x}}

    = \frac{- 2 + 1}{3} = -
\frac{1}{3}

  • Câu 5: Nhận biết

    Xác định câu sai

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 6: Nhận biết

    Tính giới hạn

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 7: Nhận biết

    Tính giới hạn A

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 8: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 9: Nhận biết

    Tính f(1)

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 10: Thông hiểu

    Xét tính đúng sai của mỗi khẳng định

    Cho giới hạn L = \lim\sqrt{3 +\frac{an^{2} - 1}{3 + n^{2}} - \frac{1}{2^{n}}}. Khi đó :

    a) L = 2 khi a = 1 Đúng||Sai

    b) L = 3 khi a = 3 Sai||Đúng

    c) L > 3 khi a > 6 Đúng||Sai

    d) Có 3 giá trị nguyên của a thuộc (0;20) sao cho \lim\sqrt{3 + \frac{an^{2} - 1}{3 + n^{2}} -\frac{1}{2^{n}}} là một số nguyên. Đúng||Sai

    Đáp án là:

    Cho giới hạn L = \lim\sqrt{3 +\frac{an^{2} - 1}{3 + n^{2}} - \frac{1}{2^{n}}}. Khi đó :

    a) L = 2 khi a = 1 Đúng||Sai

    b) L = 3 khi a = 3 Sai||Đúng

    c) L > 3 khi a > 6 Đúng||Sai

    d) Có 3 giá trị nguyên của a thuộc (0;20) sao cho \lim\sqrt{3 + \frac{an^{2} - 1}{3 + n^{2}} -\frac{1}{2^{n}}} là một số nguyên. Đúng||Sai

    Ta có \left\{ \begin{matrix}\lim\dfrac{an^{2} - 1}{3 + n^{2}} = \lim\dfrac{a -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = a \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{an^{2} -1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + a}

    Ta có \left\{ \begin{matrix}a \in (0;20),\ \ a\mathbb{\in Z} \\\sqrt{a + 3}\mathbb{\in Z} \\\end{matrix} ight.\ \overset{ightarrow}{}a \in \left\{ 1;6;13ight\}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 11: Thông hiểu

    Tìm giới hạn

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 12: Vận dụng

    Tính giới hạn

    Tính giới hạn \lim_{x ightarrow 2}\frac{\sqrt{x - 1} + x^{4} -
3x^{3} + x^{2} + 3}{\sqrt{2x} - 2}

    Ta có:

    \frac{\sqrt{x - 1} + x^{4} - 3x^{3} +
x^{2} + 3}{\sqrt{2x} - 2}

    = \frac{\sqrt{x - 1} - 1}{\sqrt{2x} - 2}
+ \frac{x^{4} - 3x^{3} + x^{2} + 4}{\sqrt{2x} - 2}

    = \frac{(x - 2)\left( \sqrt{2x} + 2
ight)}{(2x - 4)\left( \sqrt{x - 1} + 1 ight)} + \frac{(x - 2)\left(
x^{3} - x^{2} - x - 2 ight)\left( \sqrt{2x} + 2 ight)}{2x -
4}

    = \frac{\sqrt{2x} + 2}{2\left( \sqrt{x -
1} + 2 ight)} + \frac{\left( x^{3} - x^{2} - x - 2 ight)\left(
\sqrt{2x} + 2 ight)}{2}

    Do đó \lim_{x ightarrow 2}\frac{\sqrt{x
- 1} + x^{4} - 3x^{3} + x^{2} + 3}{\sqrt{2x} - 2} = 1

  • Câu 13: Thông hiểu

    Tìm m để hàm số liên tục tại một điểm

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 2}}}&{{\text{ }}khi{\text{ }}x e 2} \\   m&{{\text{  }}khi{\text{ }}x = 2} \end{array}} ight.. Với giá trị nào của m thì hàm số đã cho liên tục tại x = 2?

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 2} f\left( x ight) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 3x + 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 2} ight)\left( {x - 1} ight)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} ight) = 1 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=2 thì \mathop {\lim }\limits_{x \to 2} f\left( x ight) = f\left( 2 ight) = 1

  • Câu 14: Vận dụng

    Ghi đáp án vào ô trống

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 15: Thông hiểu

    Tìm các giá trị của tham số m

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Theo giả thiết ta có:

    3 + m = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow 3 + m = \lim_{x ightarrow
1}\left( \frac{x^{3} - x^{2} + 2x - 2}{x - 1} ight)

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1}

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\left( x^{2} + 2 ight)

    \Leftrightarrow 3 + m = 3

    \Leftrightarrow m = 0

  • Câu 16: Vận dụng cao

    Xét tính đúng sai của các khẳng định

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    a) Đúng.

    Ta có : f( - 5) = - 5 + 17 = 12, f(10) = 10 + 17 = 27 (mệnh đề a) đúng)

    b) Sai.

    Với x < - 5 ta có f(x) = x^{2} + mx + n, là hàm đa thức nên liên tục trên ( - \infty; - 5).

    Với - 5 < x < 10 ta có f(x) = x + 17, là hàm đa thức nên liên tục trên (-5; 10).

    Với x > 10 ta có f(x) = mx + n + 10, là hàm đa thức nên liên tục trên (10 ;+\infty).

    Để hàm số liên tục trên \mathbb{R} thì hàm số phải liên tục tại x = - 5x = 10.

    Ta có:

    f( - 5) = 12;f(10) = 27.

    \lim_{x ightarrow - 5^{-}}f(x) =\lim_{x ightarrow - 5^{-}}\left( x^{2} + mx + n ight) = - 5m + n + 25.

    \lim_{x ightarrow - 5^{+}}f(x) =
\lim_{x ightarrow - 5^{+}}(x + 17) = 12.

    \lim_{x ightarrow 10^{-}}f(x) = \lim_{x
ightarrow 10^{-}}(x + 17) = 27.

    \lim_{x ightarrow 10^{+}}f(x) = \lim_{x
ightarrow 10^{+}}(mx + n + 10) = 10m + n + 10.

    Hàm số liên tục tại x = - 5x = 10 khi

    \left\{ \begin{matrix}- 5m + n + 25 = 12 \\10m + n + 10 = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- 5m + n = - 13 \\10m + n = 17 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 2 \ = - 3 \\\end{matrix} ight. (mệnh đề b) sai).

    c) Sai.

    Ta có 2m + n = 1 không phải số nguyên tố (mệnh đề c) sai).

    d) Sai.

    Ta có: y = m.sinx + n.cosx\ \
\  \Rightarrow \ \ \ y = 2sinx - 3cosx

    Xét phương trình ẩn x:

    2\sin x - 3\cos x = y

    \Leftrightarrow \sin x.\frac{2}{\sqrt{13}} - \cos x.\frac{3}{\sqrt{13}} =\frac{y}{\sqrt{13}}

    \Leftrightarrow \sin x.\cos\alpha - \cos x.\sin\alpha = \frac{y}{\sqrt{13}}, với \cos\alpha = \frac{2}{\sqrt{13}},\ \sin\alpha =
\frac{3}{\sqrt{13}}.

    \Leftrightarrow \sin(x - \alpha) =
\frac{y}{\sqrt{13}}

    Ta có

    \left| \sin(x - \alpha) ight| \leq
1

    \begin{matrix}
\Rightarrow \left| \frac{y}{\sqrt{13}} ight| \leq 1 \\
\Leftrightarrow - \sqrt{13} \leq y \leq \sqrt{13} \\
\end{matrix}

    Suy ra GTLN của y bằng \sqrt{13} khi \sin(x - \alpha) = 1 hay x = \alpha + \frac{\pi}{2} + k2\pi, với \cos\alpha = \frac{2}{\sqrt{13}},\
\sin\alpha = \frac{3}{\sqrt{13}}

    Vậy khẳng định d) sai.

  • Câu 17: Nhận biết

    Hàm số không liên tục

    Hàm số nào sau đây không liên tục tại x = 2?

    Hàm số y = \frac{x^{2}}{x - 2} có tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\} nên không liên tục tại x = 2.

  • Câu 18: Thông hiểu

    Tìm giá trị của giới hạn?

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 19: Nhận biết

    Tìm giới hạn của C

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 20: Thông hiểu

    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{\sqrt{2x + 1} - 1}{x}\ khi\ x eq 0 \\m^{2} - 2m + 2\ khi\ x eq 0 \\\end{matrix} ight.. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x = 0?

    Ta có: f(0) = m^{2} - 2m + 2

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\sqrt{2x + 1} - 1}{x}

    = \lim_{x ightarrow
0}\frac{2x}{x\left( \sqrt{2x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{2}{\sqrt{2x + 1} + 1} = 1

    Hàm số liên tục tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0}f(x) = f(0)

    \Leftrightarrow m^{2} - 2m + 1 = 0
\Rightarrow m = 1

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo