Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 5: Giới hạn. Hàm số liên tục nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính giá trị của biểu thức

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 2: Thông hiểu

    Tính biểu thức K

    Tính K = \lim_{x
ightarrow + \infty}\left( \sqrt{4x^{2} + 3x + 1} - 2x
ight)

    Ta có:

    K = \lim_{x ightarrow + \infty}\left(
\sqrt{4x^{2} + 3x + 1} - 2x ight)

    K = \lim_{x ightarrow +\infty}\dfrac{4x^{2} + 3x + 1 - 4x^{2}}{\sqrt{4x^{2} + 3x + 1} +2x}

    K = \lim_{x ightarrow +\infty}\dfrac{3x + 1}{\sqrt{4x^{2} + 3x + 1} + 2x}

    K = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{1}{x}}{\sqrt{4 + \dfrac{3}{x} + \dfrac{1}{x^{2}}} + 2} =\dfrac{3}{4}

  • Câu 3: Nhận biết

    Tính giá trị?

    Giá trị của \lim\frac{1}{n + 1} bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\frac{1}{a} - 1

    Suy ra:

    \frac{1}{n +
1} < \frac{1}{n_{a} + 1} < a\ \forall n > n_{0}

    Vậy \lim\frac{1}{n + 1} = 0.

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 5: Nhận biết

    Chọn khẳng định đúng

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 6: Vận dụng cao

    Tính tổng T

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 7: Nhận biết

    Tính giới hạn

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Tính giới hạn E

    Tính giới hạn E =
\lim_{x ightarrow + \infty}\left( x + 1 - \sqrt{x^{2} - x - 2}
ight)

    Ta có:

    E = \lim_{x ightarrow + \infty}\left(
x + 1 - \sqrt{x^{2} - x - 2} ight)

    E = \lim_{x ightarrow +
\infty}\frac{\left( x + 1 - \sqrt{x^{2} - x - 2} ight)\left( x + 1 +
\sqrt{x^{2} - x - 2} ight)}{x + 1 + \sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{(x + 1)^{2} - \left( x^{2} - x - 2 ight)^{2}}{x + 1 +\sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{x\left( 3 + \dfrac{3}{x} ight)}{x\left( 1 + \dfrac{1}{x} +\sqrt{1 - \dfrac{1}{x} - \dfrac{2}{x^{2}}} ight)}

    E = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{3}{x}}{1 + \frac{1}{x} + \sqrt{1 - \dfrac{1}{x} -\dfrac{2}{x^{2}}}} = \dfrac{3}{2}

  • Câu 9: Thông hiểu

    Tìm số nghiệm của phương trình

    Cho hàm số f(x)=x^{3}-3x-1. Số nghiệm của phương trình f(x)  =0 trên \mathbb{R} là:

    Hàm số f(x)=x^{3}-3x-1 là hàm đa thức có tập xác định là \mathbb{R} nên liên tục trên \mathbb{R}

    => Hàm số liên tục trên mỗi khoảng \left( { - 2; - 1} ight),\left( { - 1;0} ight),\left( {0;2} ight)

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 2} ight) =  - 3} \\   {f\left( { - 1} ight) = 1} \end{array} \Rightarrow } ight.f\left( { - 2} ight).f\left( { - 1} ight) < 0 => Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 2; - 1} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( { - 1} ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 1; 0} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 2 ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( 2 ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { 0; 2} ight)

    Vậy phương trình f(x)  =0 có ít nhất ba nghiệm thuộc khoảng \left( { -2; 2} ight)

    Mặt khác phương trình f(x)  =0 là phương trình bậc ba có nhiều nhất ba nghiệm

    => Phương trình f(x)  =0 có đúng ba nghiệm trên \mathbb{R}

  • Câu 10: Nhận biết

    Tính giới hạn

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 11: Thông hiểu

    Tính tổng S

    Tính tổng S gồm tất cả các giá trị của tham số m để hàm số f(x) = \left\{ \begin{matrix}
x^{2} + x\ \ \ \ \ khi\ x < 1 \\
2\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\
m^{2}x + 1\ \ \ khi\ x > 1 \\
\end{matrix} ight. liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Điều kiện để bài toán trở thành

    \lim_{x
ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)\
(*)

    Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}\left( m^{2}x
+ 1 ight) = m^{2} + 1 \\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}\left( x^{2}
+ x ight) = 2 \\
f(1) = 2 \\
\end{matrix} ight.

    (*) \Leftrightarrow m^{2} + 1 = 2
\Leftrightarrow m = \pm 1

    S = - 1 + 1 = 0

  • Câu 12: Nhận biết

    Tính giá trị giới hạn

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 13: Thông hiểu

    Tìm lim?

    Chọn kết quả đúng của \lim\frac{\sqrt{n^{3} - 2n + 5}}{3 +
5n}:

    Ta có :

    \lim\frac{\sqrt{n^{3} - 2n + 5}}{3 + 5n}
= \lim\sqrt{n}.\frac{\sqrt{(1 - \frac{2}{n^{2}} +
\frac{5}{n^{3}})}}{\frac{3}{n} + 5} = + \infty

    \lim\sqrt{n} = + \infty nên suy ra:

    \lim\frac{\sqrt{\left( 1 - \frac{2}{n^{2}} +
\frac{5}{n^{3}} ight)}}{\frac{3}{n} + 5} = \frac{1}{5}

  • Câu 14: Thông hiểu

    Tìm giá trị thực của m

    Tìm giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\ 
  {m{\text{               khi }}x = 2} 
\end{array}} ight. liên tục tại x = 2.

    Tập xác định D\mathbb{= R} chứa x = 2

    Theo giả thiết ta có:

    m = f(2) = \lim_{x ightarrow
2}f(x)

    \Rightarrow m = \lim_{x ightarrow
2}\frac{x^{2} - x - 2}{x - 2} = \lim_{x ightarrow 2}(x + 1) =
3

  • Câu 15: Vận dụng

    Chọn mệnh đề đúng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

  • Câu 16: Vận dụng cao

    Giải toán và ghi lời giải vào ô trống

    Cho hàm số y = f(x) = ax^{3} +
bx^{2} + cx + 2020. Với a eq
0,a,b,c\mathbb{\in R}a + 2b +
4c - 8 > 0. Biết \lim_{x
ightarrow - \infty}f(x) = + \infty. Hỏi đồ thị hàm số y = g(x) = a(x - 2021)^{3} + b(x - 2021)^{2} + c(x
- 2021) - 1 cắt trục hoành tại bao nhiêu điểm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} +
bx^{2} + cx + 2020. Với a eq
0,a,b,c\mathbb{\in R}a + 2b +
4c - 8 > 0. Biết \lim_{x
ightarrow - \infty}f(x) = + \infty. Hỏi đồ thị hàm số y = g(x) = a(x - 2021)^{3} + b(x - 2021)^{2} + c(x
- 2021) - 1 cắt trục hoành tại bao nhiêu điểm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng

    Xác định khoảng liên tục của hàm số

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2}}}{x}{\text{           khi }}x < 1,x e 0} \\ 
  \begin{gathered}
  {\text{0      khi }}x = 0 \hfill \\
  \sqrt x {\text{   khi }}x \geqslant 1 \hfill \\ 
\end{gathered}  
\end{array}} ight.. Hàm số f(x) liên tục tại:

    Tập xác định D\mathbb{= R}

    Dễ thấy hàm số y = f(x) liên tục trên mỗi khoảng ( - \infty;0),(0;1);(1; +
\infty)

    Ta có:

    f(0) = 0

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{-}}(x) =
0

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{+}}(x) =
0

    Vậy hàm số liên tục tại x = 0

    Tương tự ta có:

    f(1) = 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 1^{-}}(x) =
1

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\sqrt{x} = 1

    Vậy hàm số liên tục tại x = 1

    Vậy hàm số đã cho liên tục trên tập số thực.

  • Câu 19: Vận dụng

    Tính giá trị của biểu thức S

    Tính tổng S = 1 + \frac{2}{3} +
\frac{4}{9} + ... + \frac{2^{n}}{3^{n}} + ... .

    Ta có:

    S = 1 + \frac{2}{3} + \frac{4}{9} + ...
+ \frac{2^{n}}{3^{n}} + ...

    = \underbrace {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} ight)}^2} + ... + {{\left( {\frac{2}{3}} ight)}^n} + ...}_{CSN:{u_1} = 1;q = \frac{2}{3}}

    = \dfrac{1}{1 - \dfrac{2}{3}} =3

  • Câu 20: Nhận biết

    Xác định sự gián đoạn của hàm số

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 21: Thông hiểu

    Tìm giá trị của giới hạn?

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 22: Nhận biết

    Bổ sung thêm giá trị của f(0)

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 23: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
\lim_{x ightarrow + \infty}y = + \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{1} \in (2; +
\infty)sao cho y\left( x_{1}
ight) = 0(1).

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
y( - 2) = - 2 + 4a - 2b + c > 0 \\
\end{matrix} ight.\  \Rightarrow \exists x_{2} \in ( -
2;2)sao cho y\left( x_{2} ight) =
0(2).

    Ta có \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
\lim_{x ightarrow - \infty}y = - \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{3} \in ( - \infty; -
2)sao cho y\left( x_{3} ight) =
0(3).

    Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục Ox bằng 3.

  • Câu 24: Vận dụng

    Tính giới hạn hàm số

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 25: Thông hiểu

    Tính kết quả giới hạn

    Tìm giới hạn H =
\lim_{x ightarrow 1}\left( \frac{3x^{2} - x - 2}{x^{2} - 1}
ight)

    Ta có:

    H = \lim_{x ightarrow 1}\left(
\frac{3x^{2} - x - 2}{x^{2} - 1} ight)

    H = \lim_{x ightarrow 1}\frac{(x -
1)(3x + 2)}{(x - 1)(x + 1)}

    H = \lim_{x ightarrow 1}\frac{3x +
2}{x + 1} = \frac{5}{2}

  • Câu 26: Thông hiểu

    Xác định giới hạn hàm số

    Xác định \lim_{x
ightarrow 0}\frac{|x|}{x^{2}}.

    Ta có: \lim_{x ightarrow 0}\frac{|x|}{x^{2}}
= \lim_{x ightarrow 0}\frac{1}{|x|} = + \infty.

  • Câu 27: Nhận biết

    Xác định giới hạn D

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 28: Thông hiểu

    Tính giới hạn hàm số đã cho

    Tính giới hạn của hàm số f(x) = \frac{\sqrt{4x^{2} + 1}}{x + 1} khi x \mapsto - \infty.

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{\sqrt{4x^{2} + 1}}{x +
1}

    = \lim_{x ightarrow -\infty}\dfrac{|x|\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1} = \lim_{x ightarrow- \infty}\dfrac{- x\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}} = \dfrac{- \sqrt{4}}{1} = -2

  • Câu 29: Thông hiểu

    Chọn đáp án đúng

    Tìm tham số a để hàm số y = \left\{ {\begin{array}{*{20}{l}}
  {{x^2} + 3x + 2}&{{\text{khi}}}&{x \leqslant  - 1} \\ 
  {4x + a}&{{\text{khi}}}&{x >  - 1} 
\end{array}} ight. liên tục tại x = - 1.

    Hàm số xác định trên \mathbb{R}.

    Ta có f( - 1) = 0.

    \lim_{x ightarrow ( - 1)^{-}}f(x) =
\lim_{x ightarrow ( - 1)^{-}}\left( x^{2} + 3x + 2 ight) =
0\lim_{x ightarrow ( -1)^{+}}f(x) = \lim_{x ightarrow ( - 1)^{+}}(4x + a) = a -4.

    Hàm số đã cho liên tục tại x = -
1 khi và chỉ khi \lim_{x
ightarrow ( - 1)^{-}}f(x) = \lim_{x ightarrow ( - 1)^{+}}f(x) = f( -
1)

    \Leftrightarrow a - 4 = 0 \Leftrightarrow a = 4.

  • Câu 30: Thông hiểu

    Xác định sự đúng sai của các kết luận

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 31: Vận dụng cao

    Ghi đáp án vào ô trống

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 32: Nhận biết

    Hàm số không liên tục

    Hàm số nào sau đây không liên tục tại x = 2?

    Hàm số y = \frac{x^{2}}{x - 2} có tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\} nên không liên tục tại x = 2.

  • Câu 33: Nhận biết

    Tính giới hạn hàm số

    Tính \lim_{x ightarrow 1}\frac{x^{2} +
3x + 2}{- 2x^{2} + x + 3}.

    Ta có :

    \lim_{x ightarrow 1}\frac{x^{2} + 3x +
2}{- 2x^{2} + x + 3} = \lim_{x ightarrow 1}\frac{1^{2} + 3.1 + 2}{-
2.1^{2} + 1 + 3} = 3.

  • Câu 34: Thông hiểu

    Tính giới hạn

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

  • Câu 35: Nhận biết

    Chọn đáp án đúng

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 36: Thông hiểu

    Chọn giá trị đúng của giới hạn?

    Cho dãy số \left(
u_{n} ight) với u_{n} =
\frac{n}{4^{n}}\frac{u_{n +
1}}{u_{n}} < \frac{1}{2}. Chọn giá trị đúng của \lim u_{n} trong các số sau:

    Áp dụng phương pháp quy nạp toán học ta có n \leq 2^{n},\ \forall n \in N

    Nên ta có :

    n \leq 2^{n} \Leftrightarrow
\frac{n}{2^{n}} \leq 1 \Leftrightarrow \frac{n}{2^{n}.2^{n}} \leq
\frac{1}{2^{n}} \Leftrightarrow \frac{n}{4^{n}} \leq \left( \frac{1}{2}
ight)^{n}

    Suy ra : 0 < u_{n} \leq \left(
\frac{1}{2} ight)^{n}, mà \lim\left( \frac{1}{2} ight)^{n} = 0

    Vậy \lim u_{n} = 0.

  • Câu 37: Nhận biết

    Hàm số liên tục tại một điểm

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 38: Nhận biết

    Tìm giới hạn?

    Giá trị của \lim\frac{\sqrt{n + 1}}{n + 2} bằng:

    Với mọi số thực a>0 nhỏ tùy ý, ta chọn n_{a} = \left\lbrack \frac{1}{a^{2}} - 1
ightbrack + 1

    Ta có:

    \frac{\sqrt{n + 1}}{n + 2} <
\frac{1}{\sqrt{n + 1}} < a  với mọi n > n_{a}

    Suy ra \lim\frac{\sqrt{n + 1}}{n + 2} =
0

  • Câu 39: Thông hiểu

    Tính giới hạn

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 40: Nhận biết

    Tìm giới hạn hàm số

    Cho hàm số y =
f(x) = \frac{2x + 3}{x - 1}. Tính \lim_{x ightarrow - \infty}f(x).

    Hàm số đã cho xác định trên ( -
\infty;1)(1; +
\infty)

    Giả sử \left( x_{n} ight) là một dãy số bất kì, thỏa mãn x_{n} <
1;x_{n} ightarrow - \infty

    Ta có: \lim f\left( x_{n} ight) =\lim\dfrac{2x_{n} + 3}{x_{n} - 1} = \lim\dfrac{2 + \dfrac{3}{x_{n}}}{1 -\dfrac{1}{x_{n}}} = 2

    Vậy \lim_{x ightarrow - \infty}\frac{2x
+ 3}{x - 1} = 2

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo