Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 5: Giới hạn. Hàm số liên tục nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính giá trị giới hạn

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 2: Vận dụng cao

    Tính tổng S

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 3: Thông hiểu

    Xác định sự đúng sai của các kết luận

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 4: Thông hiểu

    Tính giới hạn E

    Tính giới hạn E =
\lim_{x ightarrow 3^{+}}\frac{x - 3}{\sqrt{x^{2} - 9}}

    Ta có:

    E = \lim_{x ightarrow 3^{+}}\frac{x -
3}{\sqrt{x^{2} - 9}} = \lim_{x ightarrow 3^{+}}\frac{\sqrt{(x -
3)^{2}}}{\sqrt{(x - 3)(x + 3)}} = \lim_{x ightarrow
3^{+}}\frac{\sqrt{x - 3}}{\sqrt{x + 3}} = 0

  • Câu 5: Thông hiểu

    Tính giới hạn?

    Tính giới hạn của \lim\frac{1 + 3 + 5 + \ldots + (2n + 1)}{3n^{2} +
4}

    Ta có:

    \lim\frac{1 + 3 + 5 + \ldots + (2n +1)}{3n^{2} + 4}

    = \lim\dfrac{n^{2}}{3n^{2} + 4}

    = \lim\dfrac{1}{3 +\dfrac{4}{n^{2}}} = \frac{1}{3}

  • Câu 6: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Xét hàm số f(x) = x^{3} + ax^{2} + bx +
c

    Theo giả thiết 4a + c > 2b + 8
\Leftrightarrow - 8 + 4a - 2b + c > 0 \Rightarrow f( - 2) >
0;

    a + b + c < - 1 \Leftrightarrow 1 + a
+ b + c < 0 \Rightarrow f(1) < 0

    Ta có f(x) là hàm đa thức nên liên tục trên \mathbb{R}

    \left\{ \begin{matrix}\lim_{x ightarrow - \infty}f(x) = \lim_{x ightarrow - \infty}\left(x^{3} + ax^{2} + bx + c ight) = - \infty \\f( - 2) > 0 \\\end{matrix} ight.

    Suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên ( - \infty; -
2) (1)

    f( - 2)f(1) < 0 nên phương trình có ít nhất một nghiệm trên khoảng ( -
2;1) (2)

    \left\{ \begin{gathered}
 \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \left( {{x^3} + a{x^2} + bx + c} ight) =  + \infty  \hfill \\
  f\left( 1 ight) < 0 \hfill \\ 
\end{gathered}  ight.

    Suy ra phương trình có ít nhất một nghiệm trên khoảng (1; + \infty) (3)

    Từ (1); (2)(3) ta có phương trình f(x) = 0có ít nhất 3 nghiệm.

    Mặt khác f(x) = 0 là phương trình bậc ba nên có tối đa 3 nghiệm

    Vậy phương trình f(x) = 0 có đúng 3 nghiệm.

  • Câu 7: Thông hiểu

    Tìm kết luận sai

    Chọn mệnh đề sai?

    Xét n = 2k

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k}

    = \lim\left\lbrack ( - 2)^{2}
ightbrack^{k} = \lim 4^{k} = + \infty

    Xét n = 2k + 1

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k + 1}

    = \lim\left\lbrack ( - 2)^{2k}.( - 2)
ightbrack = \lim\left\lbrack 4^{k}.( - 2) ightbrack = -
\infty

  • Câu 8: Vận dụng

    Ghi đáp án vào ô trống

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Đáp án là:

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Để hàm số P(x) liên tục trên (0; + \infty) thì hàm số phải liên tục tại x_{0} = 400 hay \lim_{xightarrow 400} P(x)=P( 400 )

    Ta có:

    \lim_{x ightarrow 400^{-}}P(x) =
\lim_{x ightarrow 400^{-}}4,5x = 4,5.400 = 1800

    \lim_{x ightarrow 400^{+}}P(x) =
\lim_{x ightarrow 400^{-}}(4x + k) = 4.400 + k = 1600 + k

    Để tồn tại \lim_{xightarrow 400} P( x ) thì 1800 = 1600 +
k.

    Suy ra k = 200

  • Câu 9: Vận dụng cao

    Tính giới hạn hàm số

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Hàm số nào không liên tục tại x = 2?

    Ta có hàm số y = \frac{x^{2}}{x -
2} không xác định tại x =
2 nên hàm số không liên tục tại x =
2

    NB

  • Câu 11: Thông hiểu

    Kết quả của giới hạn

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Tìm giới hạn

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 13: Nhận biết

    Tính giới hạn của dãy số

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Ghi đáp án vào ô trống

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 15: Thông hiểu

    Tìm lim của C?

    Giá trị của C =
\lim\frac{\left( 2n^{2} + 1 ight)^{4}(n + 2)^{9}}{n^{17} + 1} bằng:

    Ta có:

    C = \lim\frac{n^{8}\left( 2 +
\frac{1}{n^{2}} ight)^{4}.n^{9}.\left( 1 + \frac{2}{n}
ight)^{9}}{n^{17}.\left( 1 + \frac{1}{n^{17}} ight)} =
\lim\frac{\left( 2 + \frac{1}{n^{2}} ight)^{4}.\left( 1 + \frac{2}{n}
ight)^{9}}{1 + \frac{1}{n^{17}}} = 16

  • Câu 16: Nhận biết

    Tính giới hạn dãy số

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 17: Thông hiểu

    Xác định giới hạn hàm số

    \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}}  = \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {1^3}}}{{{{3.1}^2} + 1}}}  = 0

  • Câu 18: Thông hiểu

    Tìm a để hàm số liên tục

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{x^{3} - 4x^{2} + 3}{x - 1}\ \ \ \ khi\ x eq 1 \\ax + \dfrac{5}{2}\ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Xác định a để hàm số liên tục trên \mathbb{R}?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} - 3x - 3 ight)}{x -
1}

    = \lim_{x ightarrow 1}\left( x^{2} -
3x - 3 ight) = - 4

    f(1) = a + \frac{5}{2}

    Hàm số liên tục trên \mathbb{R} khi và chỉ khi hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1}f(x) = f(1)

    \Leftrightarrow - 5 = a + \frac{5}{2}
\Rightarrow a = - \frac{15}{2}

  • Câu 19: Nhận biết

    Xác định hàm số không liên tục

    Hàm số nào trong các hàm số dưới đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{x}{x + 1} có tập xác định D\mathbb{= R}\backslash\left\{
- 1 ight\} nên hàm số không liên tục trên \mathbb{R}.

  • Câu 20: Vận dụng

    Tính giới hạn

    Tính giới hạn \lim\sqrt{2.3^{n} - n +
2}.

    Ta có:

    \begin{matrix}
  \lim \sqrt {{{2.3}^n} - n + 2}  \hfill \\
   = \lim \sqrt {{3^n}} \sqrt {2 - \dfrac{n}{{{3^n}}} + 2.{{\left( {\dfrac{1}{3}} ight)}^n}}  \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\sqrt{3^{n}} = + \infty \\0 \leq \dfrac{n}{3^{n}} \leq \dfrac{n}{C_{2}^{n}} = \dfrac{2}{n - 1}ightarrow 0 \Rightarrow \lim\dfrac{n}{3^{n}} = 0 \\\lim\left( \dfrac{1}{3} ight)^{n} = 0 \\\end{matrix} ight. nên \left\{\begin{matrix}\lim\sqrt{3^{n}} = + \infty \\\lim\sqrt{2 - \dfrac{n}{3^{n}} + 2\left( \dfrac{1}{3} ight)^{n}} =\sqrt{2} > 0 \\\end{matrix} ight.

    Do đó \lim\sqrt{2.3^{n} - n + 2} = +
\infty

  • Câu 21: Nhận biết

    Tính?

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 22: Nhận biết

    Chọn phương án thích hợp

    Cho c là hằng số, k là một số nguyên dương. Quy tắc nào sau đây sai?

    Ta có \lim_{x ightarrow +
\infty}\frac{1}{x^{k}} = 0 với k là một số nguyên dương.

  • Câu 23: Nhận biết

    Tính giới hạn A

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 24: Thông hiểu

    Xác định kết luận đúng, kết luận sai

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Ta có: \lim_{x ightarrow\infty}\dfrac{2n + 5}{3n + 7} = \lim_{x ightarrow\infty}\dfrac{\dfrac{2n}{n} + \dfrac{5}{n}}{\dfrac{3n}{n} + \dfrac{7}{n}} =\dfrac{2}{3}

    Ta có: Khi a = - 2 thì \lim_{x ightarrow - 2}\left( x^{2} + 4x + 3 + 4
ight) = \lim_{x ightarrow - 2}\left( x^{2} + 4x + 7 ight) =
3

    Ta có: \left\{ \begin{gathered}
  f\left( {\sqrt 3 } ight) = 2\sqrt 3  \hfill \\
  \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {\frac{{{x^2} - 3}}{{x - \sqrt 3 }}} ight) = \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {x + \sqrt 3 } ight) = 2\sqrt 3  \hfill \\ 
\end{gathered}  ight.

    Vậy hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{{{x^2} - 3}}{{x - \sqrt 3 }}{\text{   khi x }} e \sqrt 3  \hfill \\
  2\sqrt 3 {\text{   khi x  =  }}\sqrt 3  \hfill \\ 
\end{gathered}  ight. liên túc tại x = \sqrt{3}

    Ta có: \left\{ \begin{gathered}
  \left| {\frac{{\cos n}}{n}} ight| \leqslant \frac{1}{n} \hfill \\
  \lim \frac{1}{n} = 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \lim \frac{{\cos n}}{n} = 0

  • Câu 25: Thông hiểu

    Giá trị của m để hàm số đã cho liên tục

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {3x - 5}&{{\text{ }}khi{\text{ }}x \leqslant  - 2} \\   {mx + 3}&{{\text{ }}khi{\text{ }}x >  - 2} \end{array}} ight.. Giá trị của m để hàm số đã cho liên tục tại x = -2 là:

    Ta có:

     \begin{matrix}  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3x - 5} ight) = -11 \hfill \\  f\left( { - 2} ight) = -11 \hfill \\  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \left( {mx + 3} ight) =  - 2m + 3 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=-2 thì 

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = f\left( { - 2} ight)

    \Leftrightarrow  - 2m + 3 = -11 \Rightarrow m = 7

  • Câu 26: Nhận biết

    Tìm khoảng liên tục của hàm số

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 27: Thông hiểu

    Tìm kết quả đúng?

    Kết quả đúng của \lim\left( 5 - \frac{n.\cos{2n}}{n^{2} + 1}
ight) là:

    Xét: \frac{n}{n^{2} + 1} \leq
\frac{n.\cos{2n}}{n^{2} + 1} \leq \frac{n}{n^{2} + 1}

    Ta có: \lim\left( - \frac{n}{n^{2} + 1}ight) = \lim( - \frac{1}{n}.\frac{1}{1 + 1:n^{2}}) = 0

    Suy ra \lim\left( - \frac{n}{n^{2} + 1}
ight) = 0

    \Rightarrow \lim\left(
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 0\  \Rightarrow \lim\left( 5 -
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 5.

  • Câu 28: Nhận biết

    Tính giới hạn hàm số

    Tìm giới hạn \lim_{x ightarrow ( -
3)^{+}}\frac{3 + 2x}{x + 3}.

    Ta có \lim_{x ightarrow ( - 3)^{+}}(3 +
2x) = - 3, \lim_{x ightarrow ( -
3)^{+}}(x + 3) = 0x + 3 >
0 nên \lim_{x ightarrow ( - \
3)^{+}}\frac{3 + 2x}{x + 3} = - \infty.

  • Câu 29: Thông hiểu

    Xác định các mệnh đề đúng

    Cho hàm số y =
f(x) = \sqrt{x - 1}. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?

    i) Hàm số f(x) có tập xác định D = \lbrack 1; + \infty)

    ii) Hàm số f(x) liên tục trên \lbrack 1; + \infty)

    iii) Hàm số f(x) gián đoạn tại x = 1

    iv) Hàm số f(x) liên tục tại x = 0

    Ta có:

    i) Hàm số f(x) có tập xác định D = \lbrack 1; + \infty) đúng

    ii) Hàm số f(x) liên tục trên \lbrack 1; + \infty) sai. Vì hàm số gián đoạn tại x = 1

    iii) Hàm số f(x) gián đoạn tại x = 1 đúng. Vì hàm số không tồn tại giới hạn trái tại x = 1

    iv) Hàm số f(x) liên tục tại x = 0 sai vì 0 otin \lbrack 1; + \infty)

  • Câu 30: Nhận biết

    Tính giới hạn dãy số

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{4^{n - 1}}{5^{n -
2}}. Tính \lim_{n ightarrow +
\infty}u_{n}.

    Ta có:

    \lim_{n ightarrow + \infty}u_{n} =
\lim_{n ightarrow + \infty}\frac{4^{n - 1}}{5^{n - 2}} = \lim_{n
ightarrow + \infty}\left( \left( \frac{4}{5} ight)^{n}.\frac{4^{-
1}}{5^{- 2}} ight) = 0

  • Câu 31: Thông hiểu

    Tính giới hạn của hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \left[ {x(\sqrt {{x^2} + 5}  - x)} ight] bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{x\left( {\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt 1  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Chọn hình vẽ đúng

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 33: Nhận biết

    Tính giới hạn hàm số

    Tính \lim_{x
ightarrow 1}\frac{x^{2} + x - 2}{x - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + x -
2}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 2)}{x -
1}

    = \lim_{x ightarrow 1}(x + 2) =
3

  • Câu 34: Vận dụng cao

    Tìm số nguyên dương n bé nhất

    Cho phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{n} + 1}. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.

    Điều kiện xác định x^{n} \geq1

    Nếu n là số lẻ thì x^{n} \geq 1\Rightarrow x \geq 1

    Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình

    x = 1 không là nghiệm nên ta xét phương trình với x > 1

    \left\{ \begin{matrix}x^{12} + 1 \geq 2x^{2} \\x^{4}\left( x^{4} - 1 ight) + 1 \geq 2\sqrt{x^{4}\left( x^{4} - 1ight)} = 2x^{2}\sqrt{x^{4} - 1} \\\end{matrix} ight.

    \Rightarrow x^{12} + 1 \geq2x^{2}.2x^{2}\sqrt{x^{4} - 1} = 4x^{4}\sqrt{x^{4} - 1} (do x^{12} + 1 \geq 2x^{2} nên dấu bằng không xảy ra)

    Hơn nữa 4x^{4}\sqrt{x^{4} - 1} >4x^{4}\sqrt{x^{3} - 1} > 4x^{4}\sqrt{x^{2} - 1};(\forall x >1)

    Do đó phương trình không có nghiệm x >1 với n = 1,2,3,4

    Khi n = 5 ta có phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{5} +1}

    Giả sử f(x) = x^{12} + 1 -4x^{4}.\sqrt{x^{5} + 1} khi đó f(x) liên tục trên \lbrack 1; + \infty).

    Ta có: \left\{ \begin{matrix}f(1) = 2 \\f\left( \frac{6}{5} ight) < 0 \\\end{matrix} ight.\  \Rightarrow f(1).f\left( \frac{6}{5} ight) <0

    => f(x) = 0 có nghiệm

    Vậy n = 5.

  • Câu 35: Nhận biết

    Hàm số liên tục tại một điểm

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 36: Thông hiểu

    Xác định giới hạn hàm số

    Tính giới hạn \lim_{x ightarrow - 1}\frac{x^{5} + 1}{x^{3} +
1}.

    Ta có:

    \lim_{x ightarrow - 1}\frac{x^{5} +
1}{x^{3} + 1} = \lim_{x ightarrow - 1}\frac{(x + 1)\left( x^{4} -
x^{3} + x^{2} - x + 1 ight)}{(x + 1)\left( x^{2} - x + 1
ight)}

    = \lim_{x ightarrow - 1}\frac{x^{4} -
x^{3} + x^{2} - x + 1}{x^{2} - x + 1} = \frac{5}{3}

  • Câu 37: Thông hiểu

    Xét tính đúng sai của mỗi kết luận

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    Đáp án là:

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    a) Ta có: \lim\frac{2n + 1}{- 3n + 2} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( - 3 + \frac{2}{n}
ight)} = \lim\frac{2 + \frac{1}{n}}{- 3 + \frac{2}{n}} = \frac{-
2}{3}

    b) Ba số - \frac{5}{3}; -
\frac{2}{3};\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 1

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 2 nghiệm

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6

    Kết luận:

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

  • Câu 38: Vận dụng

    Ghi đáp án vào ô trống

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    \lim_{x ightarrow 2}\frac{ax^{2} +
bx - 2}{x - 2} = 5 là 1 số hữu hạn và \lim_{x ightarrow 2}(x - 2) = 0 nên \lim_{x ightarrow 2}\left( ax^{2} + bx - 2
ight) = 0 hay 4a + 2b - 2 = 0
\Leftrightarrow b = 1 - 2a.

    Khi đó:

    \lim_{x ightarrow 2}\frac{ax^{2} + bx
- 2}{x - 2} = \lim_{x ightarrow 2}\frac{ax^{2} + (1 - 2a)x - 2}{x -
2}

    = \lim_{x ightarrow 2}\frac{ax^{2} + x
- 2ax - 2}{x - 2} = \lim_{x ightarrow 2}\frac{(ax^{2} - 2ax) + (x -
2)}{x - 2}

    = \lim_{x ightarrow 2}\frac{(x - 2)(ax
+ 1)}{x - 2} = \lim_{x ightarrow 2}(ax + 1)

    = 2a + 1 = 5 \Rightarrow a =
2

    Suy ra b = - 3.

    Vậy S = - 4.

  • Câu 39: Thông hiểu

    Xác định tính đúng sai của các kết luận

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 40: Nhận biết

    Tìm giới hạn của C

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo