Chọn khẳng định đúng
Cho dãy số
với
. Khẳng định nào sau đây là đúng?
Ta có:
=> là một cấp số nhân với công bội là q = 5
Số hạng đầu tiên của dãy là:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 2: Dãy số. Cấp số cộng và cấp số nhân nha!
Chọn khẳng định đúng
Cho dãy số
với
. Khẳng định nào sau đây là đúng?
Ta có:
=> là một cấp số nhân với công bội là q = 5
Số hạng đầu tiên của dãy là:
Tìm số hạng thứ n của cấp số cộng
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Tính tổng 4 số của cấp số cộng
Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.
Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng
Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6
Theo bài ra ta có:
Vậy công sai của cấp số cộng là
Khi đó 4 số hạng được thêm lần lượt là:
Tổng bốn số hạng ở trên là:
Tìm số hạng thứ ba của cấp số nhân
Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là:
Ta có:
Vậy công sai của cấp số nhân là
Vậy số hạng tiếp theo sẽ là:
Xác định giá trị n
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.
Ta có:
Số hạng thứ 2019?
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Tìm số hạng tổng quát của dãy số
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Xác định cấp số cộng
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Tìm số hạng thứ 2018?
Cho dãy số (un) thỏa mãn
và
với mọi n ≥ 1. Số hạng u2018 là
Ta có
Dự đoán
Áp dụng theo quy nạp ta có: , công thức (1) đúng với n = 1.
Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có
Ta có
(vì với mọi k ≥ 1 ).
Suy ra công thức (1) đúng với n = k + 1
Vậy . Suy ra
Có bao nhiêu phát biểu
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) Dãy số được xác định bởi
là một dãy bị chặn.
(2) Dãy số được xác định bởi an = n2 là một dãy giảm.
(3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.
(4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.
nên dãy số xác định bởi
là một dãy bị chặn.
an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.
an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.
a1 = − 1 < a2 = 4 > a3 = − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.
Chọn khẳng định đúng
Số hạng tổng quát của cấp số cộng là
. Gọi
là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Cấp số cộng
Chọn phương án thích hợp
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Chọn đáp án đúng
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Tìm x
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Xác định công bội
Công bội nguyên dương của cấp số nhân
thỏa mãn
là:
Ta có:
Dãy số nào không lập thành một cấp số cộng
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Tính công sai d
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.
Ta có:
Tìm số hạng thứ n trong CSN
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Tính tổng S?
Tổng
có kết quả bằng?
Ta có
Do đó
Tìm số hạng tổng quát của cấp số cộng
Cho cấp số cộng
có
và
. Tìm
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: