Tính u50?
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 2: Dãy số. Cấp số cộng và cấp số nhân nha!
Tính u50?
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Chọn khẳng định đúng
Số hạng tổng quát của cấp số cộng là
. Gọi
là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Cấp số cộng
Tìm y
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Chọn đáp án đúng
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.
Tính công sai d
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.
Ta có:
Tìm số hạng thứ n của CSN
Cho dãy số (un) xác định bởi
. Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Số nguyên dương nhỏ nhất?
Cho dãy số (un) xác định bởi
.
Số nguyên dương n nhỏ nhất sao cho
là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Tìm số hạng tổng quát?
Cho dãy số (un) được xác định bởi
.
Số hạng tổng quát un của dãy số là?
Ta có
Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:
un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)
= 2 + (n−1)(n+2) − n + 1
= n2 + 1
Tìm cấp số nhân
Dãy số nào là cấp số nhân?
Theo bài ra ta có:
(loại)
(loại)
(thỏa mãn)
(loại)
Tính tổng 24 số hạng đầu tiên của cấp số cộng
Cho cấp số cộng
thỏa mãn
. Tính tổng
của
số hạng đầu tiên của cấp số cộng đã cho.
Ta có:
Khi đó:
Tính giá trị đại diện của mẫu số liệu ghép nhóm
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Tổng 10 số hạng đầu tiên của dãy
Cho cấp số cộng
với
. Tổng 10 số hạng đầu tiên của dãy là:
Tổng 10 số hạng đầu tiên của dãy là:
Chọn đáp án đúng
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Chọn khẳng định đúng
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tính tổng dãy số
Tính tổng 
Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:
Xác định số hạng đầu và công bội cấp số nhân
Dãy số
là cấp số nhân với
Cấp số nhân
Chọn khẳng định sai
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Dãy nào không phải là cấp số nhân
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Tính tổng 10 số hạng đầu tiên của cấp số nhân
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Phát biểu đúng về dãy?
Phát biểu nào dưới đây về dãy số (an) được cho bởi an = 2n + n là đúng?
Ta có an + 1 − an = 2n + 1 + n + 1 − 2n − n
= 2.2n − 2n + 1 = 2n + 1 > 0, ∀n ∈ ℕ*
Vậy (an) là dãy số tăng.
Xét tính tăng, giảm và bị chặn?
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có
Mà un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.
Vì 0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.
Ghi đáp án vào ô trống
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Số ghế ở các hàng tạo thành một cấp số cộng có và công sai
.
Giả sử hội trường có hàng ghế
.
Tổng số ghế có trong hội trường là:
Để hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì
Vậy kiến trúc sư phải thiết kế tối thiểu 20 hàng ghế.
7922 là số hạng thứ?
Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Tính giá trị biểu thức
Cho cấp số nhân
có các số hạng đều dương và
Giá trị của
là:
Ta có
Theo giả thiết, ta có:
Và
.
Suy ra . Vậy
.
Chọn kết quả đúng
Tính tổng
?
Xét dãy số là cấp số nhân với
Dãy số giảm?
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Xác định cấp số cộng
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Dãy (un) là một cấp số cộng
=> với a, b là hằng số
=>
Tìm ba số hạng đầu tiên của dãy
Cho dãy số
biết
. Ba số hạng đầu tiên của dãy đó lần lượt là những số nào dưới đây?
Ta có:
Chọn mệnh đề đúng
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Dãy số nào không phải cấp số cộng
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Tìm dãy số tăng
Cho các dãy số sau. Dãy số nào là dãy số tăng?
Xét đáp án dãy là dãy hằng nên không tăng không giảm.
Xét đáp án
(Loại)
Xét đáp án
(Chọn)
Xét đáp án
(Loại)
Tìm số hạng đầu tiên và công sai của dãy số
Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Xác định số hạng tổng quát và công bội CSN
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Chọn kết quả đúng
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Tìm vị trí số hạng đã cho
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Xác định số hạng thỏa mãn yêu cầu bài toán
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có:
Tính tổng S?
Tổng
có kết quả bằng?
Ta có
Do đó
Chọn kết quả đúng
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Dãy số nào không phải cấp số nhân
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Tìm số hạng thứ ba của cấp số nhân
Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là:
Ta có:
Vậy công sai của cấp số nhân là
Vậy số hạng tiếp theo sẽ là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: