Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Dãy số KNTT

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Dãy số sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm 3 số hạng đầu tiên của dãy số

    Cho dãy số (u_{n}), biết u_{n}=\frac{n}{3^{n}-1}. Ba số hạng đầu tiên của dãy số đó lần lượt là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{1}{{{3^1} - 1}} = \dfrac{1}{2} \hfill \\  {u_2} = \dfrac{2}{{{3^2} - 1}} = \dfrac{1}{4} \hfill \\  {u_3} = \dfrac{3}{{{3^3} - 1}} = \dfrac{3}{{26}} \hfill \\ \end{matrix}

    Ba số hạng đầu tiên của dãy số đó lần lượt là: \frac{1}{2};\frac{1}{4};\frac{3}{26}

  • Câu 2: Nhận biết
    Tìm 5 số hạng đầu tiên của dãy số

    Cho dãy số (u_{n}), biết u_{n}=\frac{-n}{n+1}. Năm số hạng đầu tiên của dãy số đó lần lượt là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2} \hfill \\  {u_2} = \dfrac{{ - 2}}{{2 + 1}} = \dfrac{{ - 2}}{3} \hfill \\  {u_3} = \dfrac{{ - 3}}{{3 + 1}} = \dfrac{{ - 3}}{4} \hfill \\  {u_4} = \dfrac{{ - 4}}{{4 + 1}} = \dfrac{{ - 4}}{5} \hfill \\  {u_5} = \dfrac{{ - 5}}{{5 + 1}} = \dfrac{{ - 5}}{6} \hfill \\ \end{matrix}

    Vậy 5 số hạng đầu tiên của dãy số là: -\frac{1}{2};-\frac{2}{3};-\frac{3}{4};-\frac{4}{5};-\frac{5}{6}

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho dãy số (u_{n}), với {u_n} = {( - 1)^n}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: {u_n} = {( - 1)^n} là dãy thay dấu nên không tăng, không giảm.

    Tập giá trị của dãy số {u_n} = {( - 1)^n} là {-1; 1}

    \Rightarrow  - 1 \leqslant {u_n} \leqslant 1

    Vậy dãy số u_{n} là dãy số bị chặn.

  • Câu 4: Nhận biết
    Tìm số hạng tiếp theo của dãy?

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Hướng dẫn:

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 5: Nhận biết
    Tìm vị trí của số hạng?

    Cho dãy số (un) có số hạng tổng quát u_{n} = \frac{2n + 1}{n +2}. Số \frac{167}{84} là số hạng thứ mấy của dãy?

    Hướng dẫn:

    Ta có u_{n} = \frac{167}{84}\Leftrightarrow \frac{2n + 1}{n + 2} = \frac{167}{84} \Leftrightarrow84(2 + 1) = 167(n + 2) \Leftrightarrow n = 250

    Vậy \frac{167}{84} là số hạng thứ 250 của dãy số (un)

  • Câu 6: Nhận biết
    Số hạng thứ 2019?

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Hướng dẫn:

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 7: Thông hiểu
    Số hạng tổng quát

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Hướng dẫn:

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 8: Thông hiểu
    Tìm số hạng u11?

    Cho dãy số (un) được xác định như sau \left\{ \begin{matrix}
u_{1} = 0 \\
u_{n + 1} = \frac{n}{n + 1}\left( u_{n} + 1 ight) \\
\end{matrix} ight.. Số hạng u11 là?

    Hướng dẫn:

    Ta có:

    \begin{matrix}
u_{2} & = \frac{1}{2}\left( u_{1} + 1 ight) = \frac{1}{2}; &
u_{3} = \frac{2}{3}\left( u_{2} + 1 ight) = 1; & u_{4} =
\frac{3}{4}\left( u_{3} + 1 ight) = \frac{3}{2}; \\
u_{5} & = \frac{4}{5}\left( u_{4} + 1 ight) = 2; & u_{6} =
\frac{5}{6}\left( u_{5} + 1 ight) = \frac{5}{2}; & u_{7} =
\frac{6}{7}\left( u_{6} + 1 ight) = 3 \\
u_{8} & = \frac{7}{8}\left( u_{7} + 1 ight) = \frac{7}{2}; &
u_{9} = \frac{8}{9}\left( u_{8} + 1 ight) = 4; & u_{10} =
\frac{1}{2}\left( u_{9} + 1 ight) = \frac{9}{2}; \\
u_{11} & = \frac{10}{11}\left( u_{10} + 1 ight) = 5 & & \\
\end{matrix}

  • Câu 9: Thông hiểu
    Tìm số hạng tổng quát?

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Hướng dẫn:

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 10: Thông hiểu
    Tìm khẳng định sai?

    Dãy số (un) được cho bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2 \\
\end{matrix} ight.. Hãy tìm khẳng định sai trong các khẳng định sau.

    Hướng dẫn:

    u_1=1

    u_2=1+2=1+1.2

    u_3=1+2+2=1+2.2

    u_4=1+2+2+2=1+3.2

    ...

    u_n=1+2+⋯+2=1+(n-1).2

    Áp dụng phương pháp quy nạp ta có un = 2n − 1.

  • Câu 11: Thông hiểu
    Công thức số hạng tổng quát?

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n + 1} = 2u_{n} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Hướng dẫn:

    Ta có

    \left\{ \begin{matrix}u_{1} = \frac{1}{2} \\u_{2} = 2u_{1} \\u_{3} = 2u_{2} \\\cdots \\u_{n} = 2u_{n - 1} \\\end{matrix} ight.

    Nhân vế với vế của các đẳng thức trên, ta được: u_{1} \cdot u_{2} \cdot u_{3}\ldots u_{n} =
\frac{1}{2} \cdot 2^{n - 1} \cdot u_{1} \cdot u_{2}\ldots u_{n - 1}
\Leftrightarrow u_{n} = 2^{n - 2}.

  • Câu 12: Vận dụng cao
    Khẳng định đúng với n nguyên dương?

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Hướng dẫn:

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 13: Vận dụng cao
    Tính tổng S?

    Tổng S =\frac{2}{1.3} + \frac{2}{3.5} + \frac{2}{5.7} + \ldots +\frac{2}{97.99} có kết quả bằng?

    Hướng dẫn:

    Ta có \frac{2}{1.3} = \frac{1}{1} -\frac{1}{3};\frac{2}{3.5} = \frac{1}{3} - \frac{1}{5};\ldots

    Do đó S = \frac{1}{1} - \frac{1}{3} +\frac{1}{3} - \frac{1}{5} + \ldots + \frac{1}{97} - \frac{1}{99} = 1 -\frac{1}{99} = \frac{98}{99}

  • Câu 14: Vận dụng
    Mệnh đề đúng?

    Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9

    Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*

    Vậy (un) là dãy số tăng.

  • Câu 15: Vận dụng
    Xét tính tăng giảm?

    Xét tính tăng, giảm của dãy số u_{n} = \frac{3^{n} - 1}{2^{n},} ta được kết quả?

    Hướng dẫn:

    Ta có u_{n + 1} - u_{n} = \frac{3^{n + 1}- 1}{2^{n + 1}} - \frac{3^{n} - 1}{2^{n}}

    = \frac{3^{n + 1} - 1 -{2.3}^{n} + 2}{2^{n + 1}} = \frac{3^{n} + 1}{2^{n + 1}} >0

    dãy (un) là dãy số tăng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Kết nối tri thức với cuộc sống

Xem thêm