Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Ôn tập chương 5 Giới hạn Hàm số liên tục

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Giới hạn. Hàm số liên tục sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính giới hạn

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Hướng dẫn:

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 2: Nhận biết
    Tính giới hạn

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Hướng dẫn:

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 3: Thông hiểu
    Tính giới hạn

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Hướng dẫn:

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 4: Thông hiểu
    Tính giá trị giới hạn

    Tính giá trị giới hạn \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    Hướng dẫn:

    Ta có:

    \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    = \lim\frac{2n^{2}}{\left(\sqrt[3]{n^{3} - 2n^{2}} ight)^{2} + n.\sqrt[3]{n^{3} - 2n^{2}} +n^{2}}

    = \lim\dfrac{- 2}{\left( \sqrt[3]{\left(1 - \dfrac{2}{n} ight)} ight)^{2} + \sqrt[3]{1 - \dfrac{2}{n}} + 1} =- \dfrac{2}{3}

  • Câu 5: Vận dụng
    Tính giới hạn hàm số

    Kết quả của giới hạn \lim\frac{2^{n + 1} + 3n + 10}{3n^{2} - n +
2}

    Hướng dẫn:

    Ta có: 2^{n} = \sum_{k =
0}^{n}C_{n}^{k}

    \Rightarrow 2^{n} \geq C_{n}^{3} =
\frac{n(n - 1)(n - 2)}{6}\sim\frac{n^{3}}{6}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.. Khi đó:

    \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2} -n + 2} = \lim\left\lbrack \dfrac{2^{n}}{n^{2}}.\dfrac{2 + 3\left(\dfrac{n}{2^{n}} ight) + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} ightbrack = + \infty

    (vì \left\{ \begin{matrix}\lim\left\lbrack 2 + 3\left( \dfrac{n}{2^{n}} ight) + 10.\left(\dfrac{1}{2} ight)^{n} ightbrack = \dfrac{2}{3} > 0 \\\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\end{matrix} ight.)

  • Câu 6: Vận dụng cao
    Tính số phần tử S

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Hướng dẫn:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 7: Nhận biết
    Tính giới hạn

    Tính giới hạn \lim_{x ightarrow + \infty}\frac{3x^{2} -
2x}{x^{2} + 1}

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow +\infty}\dfrac{3x^{2} - 2x}{x^{2} + 1} = \lim_{x ightarrow +\infty}\dfrac{3 - \dfrac{2}{x}}{1 + \dfrac{1}{x^{2}}} = \dfrac{3 - 0}{1 + 0}= 3

  • Câu 8: Nhận biết
    Tính giới hạn hàm số

    Tính \lim_{x
ightarrow 3^{+}}\frac{- x^{2} + 5}{x - 3}.

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left( { - {x^2} + 5} ight) =  - 4 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 3} ight) = 0 \hfill \\
  x - 3 > 0,\forall x > 3 \hfill \\ 
\end{gathered}  ight.

    Do đó \lim_{x ightarrow 3^{+}}\frac{-
x^{2} + 5}{x - 3} = - \infty

  • Câu 9: Thông hiểu
    Tính giới hạn hàm số

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 10: Thông hiểu
    Tìm khẳng định sai

    Cho hàm số f(x)= \left\{ \begin{matrix}x^{2} - 2x + 3\ \ \ khi\ x > 3 \\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 3 \\3 - 2x^{2}\ \ \ \ \ khi\ x < 3 \\\end{matrix} ight. . Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{xightarrow 3^{+}}\left( x^{2} - 2x + 3 ight) = 6

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{xightarrow 3^{-}}\left( 3 - 2x^{2} ight) = - 15

    \Rightarrow \lim_{x ightarrow3^{+}}f(x) eq \lim_{x ightarrow 3^{-}}f(x)

    => Không tồn tại giới hạn khi x dần đến 3.

    Vậy chỉ có khẳng định \lim_{x ightarrow3^{-}}f(x) = 6 sai.

  • Câu 11: Vận dụng
    Xác định giới hạn hàm số

    \lim_{x
ightarrow 1}\frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} bằng:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{100} - 2x
+ 1}{x^{50} - 2x + 1}

    = \lim_{x ightarrow 1}\frac{\left(
x^{100} - 1 ight) - 2(x - 1)}{\left( x^{50} - 1 ight) - 2(x -
1)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( x^{99} + x^{98} + .... + x + 1 - 2 ight)}{(x - 1)\left(
x^{49} + x^{48} + .... + x + 1 - 2 ight)}

    = \lim_{x ightarrow 1}\frac{x^{99} +
x^{98} + .... + x + 1 - 2}{x^{49} + x^{48} + .... + x + 1 - 2} =
\frac{98}{48} = \frac{49}{24}

  • Câu 12: Nhận biết
    Tìm hàm số không liên tục

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số f(x) liên tục trên đoạn [−1; 4] sao cho f(−1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [−1; 4]:

    Hướng dẫn:

    Ta có:

    Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.

    Khi đó

    \left\{ \begin{matrix}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \\g(4) = f(4) - 5 = 7 - 5 = 2 \\\end{matrix} ight.

    \Rightarrow g( - 1).g(4) <
0

    Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)

  • Câu 14: Thông hiểu
    Tìm m để hàm số liên tục

    Tìm a để hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 4}{x - 2}\ \ khi\ x eq 2 \\m^{2} + 3m\ \ \ khi\ x = 2 \\\end{matrix} ight. liên tục tại x = 2. Tìm m để hàm số liên tục tại x = 2.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 2}\frac{x^{2} - 4}{x
- 2} = \lim_{x ightarrow 2}(x + 2) = 4

    Để hàm số liên tục tại x = 1 thì m^{2} + 3m = 4 \Rightarrow \left\lbrack
\begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

  • Câu 15: Vận dụng cao
    Tìm số tự nhiên n

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{x + x^{2} + ... + x^{n} - n}{x - 1}\ \ khi\ x eq 1 \\15\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm số tự nhiên n để hàm số liên tục tại x_{0} = 1.

    Hướng dẫn:

    Ta có: f(1) = 15

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{x + x^{2} + ... + x^{n} - n}{x - 1}

    = \lim_{x ightarrow 1}\frac{x - 1 +
x^{2} - 1 + ... + x^{n} - 1}{x - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack 1 + (x + 1) + \left( x^{2} + x + 1 ight) + ... + \left(
x^{n - 1} + x^{n - 2} + ... + 1 ight) ightbrack}{x -
1}

    = 1 + 2 + ... + n = \frac{n(n +
1)}{2}

    Hàm số f(x) liên tục tại x_{0} =
1 khi và chỉ khi

    \lim_{x ightarrow 1}f(x) =
f(1)

    \Leftrightarrow \frac{n(n + 1)}{2} =
15

    \Leftrightarrow n = 5

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Kết nối tri thức với cuộc sống

Xem thêm