Chọn mệnh đề đúng
Chọn mệnh đề đúng trong các mệnh đề sau:
Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.
Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.
Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Kết nối tri thức nha!
Chọn mệnh đề đúng
Chọn mệnh đề đúng trong các mệnh đề sau:
Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.
Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.
Tính số đo cung AN
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Xác định nghiệm của phương trình
Nghiệm của phương trình
là:
Giải phương trình ta có:
Vậy phương trình có nghiệm
Tính độ dài GG'
Cho mảnh bìa như hình vẽ sau, biết
là hình vuông cạnh
. Các tam giác
là các tam giác cân bằng nhau. Gọi
lần lượt là trọng tâm của hai tam giác
và
. Người ta xếp mảnh bìa này thành hình chóp tứ giác
(các điểm
trùng vào đỉnh
). Khi đó tính độ dài đoạn thẳng
.

Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:
Từ giả thiết ta có:
Chọn đáp án đúng
Cho các mệnh đề:
1) Nếu hàm số
liên tục trên
và
thì tồn tại
sao cho
.
2) Nếu hàm số
liên tục trên
và
thì phương trình
có nghiệm.
3) Nếu hàm số
đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
.
Trong các mệnh đề trên:
Theo tính chất hàm số liên tục thì
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
. Mệnh đề sai.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm. Mệnh đề đúng.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
. Mệnh đề đúng.
Ghi đáp án vào ô trống
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính
?
Đáp án: 164,7
(Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính
?
Đáp án: 164,7
(Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Khi đó
Tìm giới hạn hàm số
Cho hàm số
. Tính
.
Hàm số đã cho xác định trên và
Giả sử là một dãy số bất kì, thỏa mãn
Ta có:
Vậy
Tìm nghiệm của phương trình
Nghiệm của phương trình
là
Quy ước chiều dương đường tròn lượng giác
Quy ước chọn chiều dương của một đường tròn định hướng là
Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ
Tìm câu sai
Trong các khẳng định sau khẳng định nào sai?
Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.
Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.
Tìm mệnh đề đúng
Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.
Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.
Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.
Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”
Tính lim
Cho dãy số (un) xác định bởi
. Tính
.
Ta có:
Đặt
Từ đó:
Khi đó:
Từ đó ta có:
Vậy
=>
Tìm công thức của số hạng?
Cho dãy số (un) với
. Công thức số hạng tổng quát của dãy số là?
Ta có suy ra được
.
Chọn đáp án đúng
Hãy nêu tất cả các hàm số trong các hàm số
thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng
?
Ta có:
Hàm số y = tan x đồng biến và nhận giá trị âm trên khoảng
=> sai
Trên khoảng hàm số y = sin x đồng biến và nhận giá trị âm.
Số hạng thứ?
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Chọn cách xác định điểm E
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
. Gọi
là giao điểm của
và
. Giao điểm của
với
là điểm
. Hãy chọn cách xác định điểm
đúng nhất trong bốn phương án sau.
Hình vẽ minh họa
Trong mặt phẳng gọi
.
Mà nên
Khoảng đồng biến, nghịch biến của hàm số
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Tính tổng 4 số của cấp số cộng
Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.
Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng
Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6
Theo bài ra ta có:
Vậy công sai của cấp số cộng là
Khi đó 4 số hạng được thêm lần lượt là:
Tổng bốn số hạng ở trên là:
Chọn kết luận đúng
Nhóm số liệu ghép nhóm có dạng
. Khi đó giá trị đại diện của nhóm tính bằng công thức nào sau đây?
Giá trị đại diện của một nhóm số liệu là trung bình cộng giá trị hai đầu mút của nhóm số liệu.
Công thức tính giá trị đại diện của nhóm là
Tìm trung vị của mẫu số liệu
Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:
Chiều cao (cm) | Số học sinh |
[150; 154] | 5 |
[155; 159] | 2 |
[160; 164] | 6 |
[165; 169] | 8 |
[170; 174] | 9 |
[175; 179] | 11 |
[180; 184] | 6 |
[185; 189] | 3 |
Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(149,5; 154,5] | 5 | 5 |
(154,5; 159,5] | 2 | 7 |
(159,5; 164,5] | 6 | 13 |
(164,5; 169,5] | 8 | 21 |
(169,5; 174,5] | 9 | 30 |
(174,5; 179,5] | 11 | 41 |
(179,5; 184,5] | 6 | 47 |
(184,5; 189,5] | 3 | 50 |
Tổng | N = 50 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Tìm số hạng cuối của cấp số nhân
Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối
của cấp số nhân đã cho.
Theo giả thiết ta có:
Chọn khẳng định sai
Khẳng định nào sau đây là sai?
Khẳng định sai là: "Phép chiếu song song có thể biến đường trung tuyến tam giác thành đường thẳng không phải là trung tuyến tam giác ảnh."
Hàm số liên tục
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Chọn đáp án thích hợp
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là:
Do nên
Do đó nhiệt độ cao nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 15h là thời gian nhiệt độ cao nhất trong ngày.
Tính số tế bào được tạo thành
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Xác định bảng dữ liệu ghép nhóm đúng
Cho bảng số liệu thống kê sau:
Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần
69 | 37 | 39 | 65 | 31 | 33 | 63 |
51 | 44 | 62 | 33 | 47 | 55 | 42 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Bảng M | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng N | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 4 | 2 | |
Bảng P | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 2 | 3 | 4 | |
Bảng Q | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 3 | 5 | 2 | 4 |
Khoảng biến thiên là 69 – 31 = 38
Ta chia thành các nhóm sau: [30; 40), [40; 50), [50; 60), [60; 70)
Đếm số giá trị mỗi nhóm ta có bảng ghép nhóm
Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 |
Ghi đáp án vào ô trống
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Phần giải chi tiết
Tập xác định .
Hàm số liên tục trên các khoảng
.
Ta có
Hàm số liên tục trên
khi và chỉ khi
.
Điền chữ thích hợp vào ô trống
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có SM ⊥ BC và AM ⊥ BC.
AH, SK và BC đồng qui tại M. Do đó (I) đúng.
AG, SF cắt nhau tại M trên BC. Do đó (II) đúng.
HF và GK cùng nằm trong mặt phẳng (SAM) nên có thể song song hoặc cắt nhau hoặc trùng nhau. Do đó (III) sai.
SH và AK cắt nhau. Do đó (IV) đúng.
Chọn đáp án chưa thích hợp
Dãy số nào sau đây không phải là cấp số nhân?
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số cộng với công sai
.
Chọn đáp án đúng
Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Đáp án đúng là:
Xác định khoảng nghịch biến của hàm số
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm tam giác ABC. Giả sử mặt phẳng (P) đi qua G và song song với mặt phẳng (BCD). Xác định các giao tuyến của (P) với các mặt của tứ diện đều. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa:
Trong mặt phẳng (ABC) kẻ đường thẳng qua G và song song với BC cắt AC, AB lần lượt tại H, K.
Trong mặt phẳng (ACD) kẻ đường thẳng qua H và song song với CD cắt AD tại I.
Hình tạo bởi các giao tuyến cần tìm là KHI.
theo tỉ số đồng dạng bằng
Chọn mệnh đề đúng
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Tính giới hạn của hàm số
Tính giới hạn của hàm số
.
Ta có:
Chọn mệnh đề đúng
Cho hai đường thẳng
và
lần lượt nằm trên hai mặt phẳng song song
và
.
Mệnh đề đúng là: "Nếu và
không song song với nhau, điểm
không nằm trên
và
thì luôn có duy nhất một đường thẳng đi qua
cắt cả
và
."
Tính giá trị biểu thức P
Biết rằng
với
là các tham số. Tính giá trị của biểu thức
.
Ta có:
Tính giới hạn hàm số
Tính giới hạn ![]()
Ta có:
Ghi đáp án vào ô trống
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Ta có:
và
lần lượt là trọng tâm các tam giác
và
nên
,
và
đồng qui tại
(là trung điểm của
) .
Vì nên
và
.
Lại có
Hoàn thành bảng số liệu
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Ta có:
Tuổi | Đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60) | 55 | 10 |
[60; 70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90) | 85 | 1 |
Chọn câu đúng về dãy số?
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Tính diện tích đa giác tạo bởi các điểm biểu diễn nghiệm
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Tính giá trị?
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Tính giá trị biểu thức
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Đếm số phát biểu đúng?
Cho dãy số (un) có u1 = 1 và
.
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) (un) là dãy số bị chặn trên.
Ta có nên dãy số tăng.
Vậy phát biểu (1) đúng.
Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.
Vậy phát biểu (2) đúng.
Ta lại có
Cộng các đẳng thức trên theo từng vế, ta được:
Mặt khác
Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.
Tính giá trị biểu thức
Tính giá trị biểu thức ![]()
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: