Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn khẳng định sai

    Cho hai hình bình hành ABCDABEF không đồng phẳng có tâm lần lượt là IJ. Chọn

    khẳng định sai.

    Hình vẽ minh họa

    Do IJ là trung điểm của BDBF, nên IJ//DFDF
\subset (ADF) \Rightarrow IJ//(ADF), suy ra IJ / /(ADF) và IJ / / DF đúng.

    Do IJ là trung điểm của ACAE, nên IJ//ECEC
\subset (CBE) \Rightarrow IJ//(CEB), suy ra IJ / /(CEB) đúng.

    Vậy IJ / / ADsai

  • Câu 2: Thông hiểu

    Tính giới hạn của hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \left[ {x(\sqrt {{x^2} + 5}  - x)} ight] bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{x\left( {\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt 1  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Chọn phát biểu đúng

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 4: Thông hiểu

    Tính trung vị của mẫu dữ liệu ghép nhóm

    Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    Số cây

    10

    15

    17

    14

    12

    2

    Tính trung vị của mẫu dữ liệu ghép nhóm.

    Ta có:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

     

    Số cây

    10

    15

    17

    14

    12

    2

    N = 70

    Tần số tích lũy

    10

    25

    42

    56

    68

    70

     

    Ta có: \frac{N}{2} = \frac{70}{2} =35

    => Nhóm chứa trung vị là: [60; 70) (vì 35 nằm giữa hai tần số tích lũy là 25 và 56)

    \Rightarrow l = 60;\frac{N}{2} =\frac{70}{2} = 35;m = 25;f = 17,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    = 60 + \dfrac{(35 - 25)}{17}.10 \approx 66

  • Câu 5: Thông hiểu

    Chọn đáp án đúng

    Cho cấp số cộng \left( u_{n}
ight)có số hạng đầu u_{1} = -
5và công sai d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 100 = - 5 + (n - 1)3
\Leftrightarrow n = 36

  • Câu 6: Vận dụng cao

    Chọn câu đúng về dãy số?

    Cho dãy số (un), biết \left\{ \begin{matrix}
u = \sqrt{2} \\
u_{n + 1} = \sqrt{2 + u_{n}},n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Khẳng định nào sau đây đúng về dãy số (un) ?

    Ta có u_{1} = \sqrt{2};u_{2} = \sqrt{2 +\sqrt{2}};u_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}};

    \ldots;u_{n} = \sqrt{2+ \sqrt{2} + \sqrt{2 + \ldots + \sqrt{2}}}

    Do un + 1 − un > 0 nên (un) là dãy số tăng.

    Lại có \sqrt{2} < u_{n} \leq 2 suy ra dãy số bị chặn.

  • Câu 7: Vận dụng cao

    Tìm tất cả các giá trị nguyên của tham số a

    Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}

    Ta có:

    \lim\sqrt[4]{\dfrac{4^{n} + 2^{n +1}}{3^{n} + 4^{n + a}}} = \lim\sqrt[4]{\dfrac{1 + 2\left( \dfrac{1}{2}ight)^{n}}{\left( \dfrac{3}{4} ight)^{n} + 4^{n}}}

    \begin{matrix}
   = \sqrt {\dfrac{1}{{{4^a}}}}  = \sqrt {\dfrac{1}{{{{\left( {{2^a}} ight)}^2}}}}  = \dfrac{1}{{{2^a}}} \leqslant \dfrac{1}{{1024}} \hfill \\
   \Leftrightarrow {2^a} \geqslant 1024 = {2^{10}} \hfill \\
   \Leftrightarrow a \geqslant 10 \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}
a \in (0;2018) \\
a\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 10;11;...;2017
ight\}

    Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.

  • Câu 8: Vận dụng

    Mặt phẳng nào song song với (IJK)

    Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)

    Hình vẽ minh họa

    Mặt phẳng nào song song với (IJK)

    Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.

    => \frac{{AI}}{{IM}} = \frac{{AJ}}{{JN}} = 2 (tính chất trọng tâm tam giác)

    => IJ//MN(1)

    Xét mặt phẳng (AA'EM) ta có: \frac{{AI}}{{IM}} = \frac{{A'K}}{{KE}} = 2

    => IK//ME

    ME //BB'

    => IK//BB'(2)

    Từ (1) và (2) => (IJK)(BB'C)là hai mặt phẳng phân biệt. Khi đó ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\left( {IJK} ight) e \left( {BB'C'} ight)} \\   {IJ,IK \subset \left( {IJK} ight)} \\   {MN,BB' \subset \left( {BB'C'} ight)} \end{array}} ight. \hfill \\   \Rightarrow \left( {IJK} ight)//\left( {BB'C'} ight) \hfill \\ \end{matrix}

  • Câu 9: Vận dụng cao

    Tính giá trị lớn nhất của hàm số lượng giác

    Giá trị lớn nhất của hàm số: y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}

     Ta có: 

    \begin{matrix}  \sin x + \cos x = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow  - 1 \leqslant \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Rightarrow  - \sqrt 2  \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\   \Rightarrow  - \sqrt 2  + 2 \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2 \leqslant \sqrt 2  + 2 \hfill \\   \Rightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2  >  0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  y = \dfrac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}} \hfill \\   \Leftrightarrow \left( {1 - y} ight)\sin x + \left( {2 - y} ight)\cos x + 1 - 2y = 0 \hfill \\ \end{matrix}

    Phương trình có nghiệm:

    \begin{matrix}   \Leftrightarrow {\left( {1 - y} ight)^2} + {\left( {2 - y} ight)^2} \geqslant {\left( {1 - 2y} ight)^2} \hfill \\   \Leftrightarrow {y^2} + y - 2 \leqslant 0 \Leftrightarrow  - 2 \leqslant y \leqslant 1 \hfill \\   \Rightarrow \max y = 1 \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 11: Vận dụng

    Có bao nhiêu số tự nhiên k chẵn thỏa mãn đẳng thức

    Có bao nhiêu số tự nhiên chẵn k để \lim \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2}

    Ta có:

    \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2} - \frac{{\sqrt n \sin 2n}}{{2n}}

    Bài toán trở thành \lim \frac{{\sqrt n \sin 2n}}{{2n}} = 0

    Ta có: \lim \cos \frac{1}{n} = \cos 0 = 1 nên bài toán trở thành tìm k sao cho

    \begin{matrix}  \lim \dfrac{{\sqrt {{n^k}} }}{n} = \lim \left( {{n^{\dfrac{k}{2} - 1}}} ight) = 0 \hfill \\   \Leftrightarrow \dfrac{k}{2} - 1 < 0 \Leftrightarrow k < 2 \hfill \\ \end{matrix}

    k \in {\mathbb{N}^*};k = 3l

    => Không tồn tại giá trị của k (do k nguyên dương và k chẵn).

  • Câu 12: Vận dụng

    Tìm a

    Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng 19,92?

    Đối tượng

    Tần số

    [4; 8)

    11

    [8; 12)

    13

    [12; 16)

    16

    [16; 20)

    14

    [20; 24)

    a

    [24; 28)

    9

    [28; 32)

    17

    [32; 36)

    6

    [36; 40)

    4

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    6

    11

    66

    10

    13

    130

    14

    16

    224

    18

    14

    252

    22

    a

    22a

    26

    9

    234

    30

    17

    510

    34

    6

    204

    38

    4

    152

    Tổng

    90 + a

    1772 + 22a

    Biết số trung bình bằng  19,92  nên ta có:

    \overline{x} = 19,92

    \Leftrightarrow \frac{1772 + 22a}{90 +a} = 19,92

    \Leftrightarrow a = 10

  • Câu 13: Vận dụng cao

    Tính giá trị S

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 14: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 15: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 16: Thông hiểu

    Tìm mặt phẳng song song với mặt phẳng

    Cho hình lăng trụ ABC.A'B'C'. Trọng tâm các tam giác ABC,ACC',A'B'C' lần lượt là I,J,K. Tìm mặt phẳng song song với mặt phẳng (IJK).

    Theo bài ra ta có:

    Các điểm I,J,K lần lượt là trọng tâm các tam giác ABC,ACC',A'B'C' .

    \Rightarrow \frac{AI}{AM} = \frac{AJ}{AN}
= \frac{2}{3} \Rightarrow IJ//MN.

    \Rightarrow
IJ//(BCC'B')

    Chứng minh tương tự IK//(BCC'B')
\Rightarrow (IJK)//(BCC'B')

    \Rightarrow
(IJK)//(BC'B')

  • Câu 17: Vận dụng

    Mỗi tháng bác Hoa phải trả bao nhiêu tiền

    Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?

    Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)

    Ta có:

    x =
\frac{900.10^{6}.0,06.1,06^{3}}{1,06^{3} - 1}

    x = 336698831,5 (đồng)

    Vậy số tiền bác Hoa phải trả mỗi tháng là T = \frac{336698831,5}{12} \approx
28058236(đồng).

  • Câu 18: Nhận biết

    Tính số hạng của cấp số nhân

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 19: Thông hiểu

    Tìm khoảng đồng biến của hàm số

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 20: Thông hiểu

    Chọn mệnh đề đúng

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 21: Nhận biết

    Xác định số mặt phẳng chứa tất cả các đỉnh

    Cho tam giác ABC. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác ABC?

    Có duy nhất một mặt phẳng chứa tất cả các đỉnh của tam giác ABC.

  • Câu 22: Nhận biết

    Tính f(0)

    Cho hàm số f(x) xác định và liên tục trên ( - 4; + \infty) với f(x) = \frac{x}{\sqrt{x + 4} - 2} với x eq 0. Tính f(0).

    Ta có hàm số f(x) xác định và liên tục trên ( - 4; + \infty) nên suy ra

    f(0) = \lim_{x ightarrow
0}f(x)

    = \lim_{x ightarrow 0}\left(
\frac{x}{\sqrt{x + 4} - 2} ight)

    = \lim_{x ightarrow 0}\left( \sqrt{x +
4} + 2 ight) = 4

  • Câu 23: Thông hiểu

    Tính tỉ lệ trăm học sinh dưới 168cm

    Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

    Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?

    Số học sinh tham gia đo chiều cao là 36 học sinh

    Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm \frac{24.100\%}{36} \approx 66,7\%

  • Câu 24: Vận dụng

    Mệnh đề đúng?

    Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?

    Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9

    Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*

    Vậy (un) là dãy số tăng.

  • Câu 25: Nhận biết

    Chọn khẳng định đúng

    Cho ba mặt phẳng (\alpha),(\beta),(\gamma) lần lượt giao nhau theo các giao tuyến phân biệt m,n,d. Khẳng định nào dưới đây đúng?

    Theo định lí về giao tuyến của ba mặt phẳng thì m,n,d đôi một song song hoặc đồng quy.

  • Câu 26: Thông hiểu

    Tìm số hạng thứ 3n của dãy

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Xác định số nhóm số liệu

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Mẫu dữ liệu đã cho có bao nhiêu nhóm?

    Mẫu dữ liệu ghép nhóm đã cho có 6 nhóm.

  • Câu 28: Thông hiểu

    Xét tính đúng sai của mỗi khẳng định

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 29: Nhận biết

    Tìm số hạng tiếp theo của dãy?

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 30: Nhận biết

    Tìm nhóm chứa tứ phân vị thứ ba

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

  • Câu 31: Nhận biết

    Tìm m để PT có nghiệm

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m + 1} ight)\sin x + 2 - m = 0 có nghiệm?

     Phương trình \left( {m + 1} ight)\sin x + 2 - m = 0

    \Leftrightarrow \left( {m + 1} ight)\sin x = m - 2 \Leftrightarrow \sin x = \frac{{m - 2}}{{m + 1}}

    Để phương trình có nghiệm \Leftrightarrow  - \,1 \leqslant \frac{{m - 2}}{{m + 1}} \leqslant 1

    \Leftrightarrow \left\{ \begin{gathered}  0 \leqslant 1 + \frac{{m - 2}}{{m + 1}} \hfill \\  \frac{{m - 2}}{{m + 1}} - 1 \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  \frac{{2m - 1}}{{m + 1}} \geqslant 0 \hfill \\   - \frac{3}{{m + 1}} \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  m \geqslant \frac{1}{2} \hfill \\  m <  - \,1 \hfill \\ \end{gathered}  ight. \hfill \\  m >  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow m \geqslant \frac{1}{2}

    là giá trị cần tìm.

  • Câu 32: Thông hiểu

    Xác định thiết diện

    Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng (\alpha) đi qua M, song song với AB và AD. Thiết diện (\alpha) với tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    (\alpha) // (AB) => Giao tuyến của (\alpha) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.

    (\alpha) // AD => Giao tuyến của (\alpha) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.

    Vậy thiết diện là tam giác MNP.

  • Câu 33: Thông hiểu

    Xác định số nghiệm của phương trình lượng giác

    Số nghiệm trong khoảng ( - \pi\ ;\
\pi) của phương trình 1 - \cos2x =0 là

    Ta có:

    1 - cos2x = 0

    \Leftrightarrow cos2x = 1

    \Leftrightarrow 2x = k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = k\pi\left(
k\mathbb{\in Z} ight).

    Với - \pi < x < \pi thì - 1 < k < 1.

    Suy ra k = 0.

    Vậy có 1 nghiệm trong khoảng ( - \pi\ ;\
\pi).

  • Câu 34: Nhận biết

    Tính giới hạn B

    Tính giới hạn B =
\lim_{x ightarrow ( - 2)^{-}}\left( \frac{3 + 2x}{x + 2}
ight).

    Ta có:

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3 + 2x} ight) =  - 1 < 0

    \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {x + 2} ight) = 0} \\ 
  {x \mapsto {{\left( { - 2} ight)}^ - } \Rightarrow x + 2 < 0} 
\end{array}} ight.

    \Rightarrow B = \lim_{x ightarrow ( -
2)^{-}}\left( \frac{3 + 2x}{x + 2} ight) = + \infty

  • Câu 35: Nhận biết

    Tìm giới hạn của C

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 36: Nhận biết

    Chọn mệnh đề đúng

    Mệnh đề nào sau đây đúng?

    Đáp án đúng là: \sin(a + b) = \sin a\cos b + \sin b\cos a

  • Câu 37: Thông hiểu

    Điền đáp án vào chỗ trống

    Cho bảng số liệu ghép nhóm sau:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8

    Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3

    Đáp án là:

    Cho bảng số liệu ghép nhóm sau:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8

    Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{N}{4} = 22,5

    => Nhóm chứa tứ phân vị thứ nhất là: [20; 40)

    Khi đó ta có: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22,5 \\m = 16,f = 12,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22,5 -16}{12}.20 \approx 30,8

    Ta có: \frac{3N}{4} = \frac{3.90}{4} =67,5

    => Nhóm chứa tứ phân vị thứ ba là: [60; 80)

    Khi đó ta có: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 67,5 \\m = 53,f = 15,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ ba được tính như sau:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{67,5 -53}{15}.20 \approx 79,3

  • Câu 38: Thông hiểu

    Xác định mệnh đề đúng

    Cho ba đường thẳng a,b,c đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?

    Gọi M là điểm bất kì nằm trên a.

    Giả sử d là đường thẳng qua M cắt cả b và c.

    Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.

    Với mỗi điểm M ta được một đường thẳng d.

    Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.

  • Câu 39: Vận dụng

    Xác định số nghiệm của phương trình

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 40: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số f(x) liên tục trên đoạn [−1; 4] sao cho f(−1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [−1; 4]:

    Ta có:

    Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.

    Khi đó

    \left\{ \begin{matrix}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \\g(4) = f(4) - 5 = 7 - 5 = 2 \\\end{matrix} ight.

    \Rightarrow g( - 1).g(4) <
0

    Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)

  • Câu 41: Nhận biết

    Chọn khẳng định đúng

    Cho mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó.

    Theo lý thuyết ta có: mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó a // b.

    Vậy a và b không có điểm chung nào.

  • Câu 42: Nhận biết

    Tìm khẳng định sai

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 43: Thông hiểu

    Xét tính đúng sai của mỗi khẳng định

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Đáp án là:

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + ax + 5} + x ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{x^{2} + ax + 5 - x^{2}}{\sqrt{x^{2} + ax + 5} - x}
ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{ax + 5}{\sqrt{x^{2} + ax + 5} - x} ight) = -
6

    \Leftrightarrow \lim_{x ightarrow -\infty}\left( \dfrac{a + \dfrac{5}{x}}{- \sqrt{1 + \dfrac{a}{x} +\dfrac{5}{x^{2}}} - 1} ight) = - 6

    \Leftrightarrow \frac{a}{- 2} = - 6
\Leftrightarrow a = 12.

    Vì vậy giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 =
0.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 44: Vận dụng

    Tính giá trị biểu thức

    Cho phương trình 3\cos x + \cos2x - \cos3x + 1 = 2\sin x.\sin2x. Gọi \alpha là nghiệm nhỏ nhất thuộc khoảng (0;2\pi) của phương trình. Tính \sin\left( \alpha - \frac{\pi}{4}
ight).

    Phương trình tương đương:

    3\cos x + \cos2x - \cos3x + 1 =2\sin x.\sin2x

    \Leftrightarrow 2\cos x + \cos2x + 1 =0

    \Leftrightarrow \cos^{2}x + \cos x =0

    \Leftrightarrow \left\lbrack\begin{matrix}\cos x = 0 \\\cos x = - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi \\x = \pi + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    (0;2\pi) nên x \in \left\{ \frac{\pi}{2};\pi;\frac{3\pi}{2}
ight\}. Nghiệm lớn nhất của phương trình là \alpha = \frac{\pi}{2}

    Vậy \sin\left( \alpha - \frac{\pi}{4}
ight) = \sin\left( \frac{\pi}{2} - \frac{\pi}{4} ight) =
\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}

  • Câu 45: Thông hiểu

    Tính giá trị lượng giác

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo