Chọn mệnh đề đúng
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề
nào dưới đây đúng?
Hình vẽ minh họa

Gọi M là trung điểm của AB.
Ta có:
=>
Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Kết nối tri thức nha!
Chọn mệnh đề đúng
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề
nào dưới đây đúng?
Hình vẽ minh họa

Gọi M là trung điểm của AB.
Ta có:
=>
Tính giới hạn
bằng
Ta có:
Tìm 3 số hạng để dãy số lập thành CSC
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Xác định hình tạo bởi các giao tuyến
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấy
. Giả sử
là mặt phẳng đi qua
song song với hai đường thẳng
và
. Xác định giao tuyến của
với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình
Hình vẽ minh họa
Gọi trung điểm lần lượt là
.
Gọi
Từ kẻ
song song với
.
Ta có:
(1)
Ta có (2)
Từ (1) và (2) => Các giao tuyến của với các cạnh của hình chóp là hình ngũ giác
.
Chọn phát biểu đúng
Cho hai mặt phẳng phân biệt (P) và (Q)
(1) nếu hai mặt phẳng (P) và (Q) song song với nhay thì mọi đường thẳng nằm trên (P) đều song song với mọi đường thẳng nằm trên (Q).
(2) nếu mọi đường thẳng nằm trong mặt phẳng (P) đều song song với (Q) thì (P) song song với (Q).
Trong hai phát biểu trên.
Theo định lý, nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q), do đó nếu lấy mọi đường thẳng nằm trong mặt phẳng (P) thì tồn tại hai đường thẳng cắt nhau thỏa mãn định lý, vậy phát biểu (2) đúng.
Phát biểu (1) sai vì hai đường thẳng đó có thể chéo nhau.
Tìm đáp án đúng
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Tính giá trị trung vị của mẫu dữ liệu
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị trung vị của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó trung vị là:
Xét tính đúng sai của các khẳng định
Cho hình chóp
có đáy là hình bình hành. Qua
kẻ
lần lượt song song với
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
b) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
c) Giao tuyến của
và
là đường thẳng
. Đúng||Sai
d) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
Cho hình chóp
có đáy là hình bình hành. Qua
kẻ
lần lượt song song với
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
b) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
c) Giao tuyến của
và
là đường thẳng
. Đúng||Sai
d) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
Hình vẽ minh họa
Ta có:
với
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Mặt phẳng nào song song với (IJK)
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Tính giới hạn
Giá trị của giới hạn
bằng:
Ta có:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a
=>
Tương tự:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b
=>
Xét sự đúng sai của các phát biểu
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Tìm mốt của mẫu số liệu ghép nhóm
Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:
|
Mức giá (triệu đồng/m2) |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
54 |
78 |
120 |
45 |
12 |
Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây?
Nhóm chứa mốt của mẫu số liệu là nhóm [18;22).
Do đó: .
Vậy mốt của mẫu số liệu là:
Tìm x và y để dãy số là cấp số cộng
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Tìm nghiệm của PT
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Xác định hàm số lượng giác
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Ta có và
nên loại C và D.
Ta thấy tại thì
. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.
Tính số khẳng định đúng
Cho hình chóp tứ giác
có đáy
là hình bình hành. Mặt phẳng
song song với
và
đồng thời cắt các đoạn
lần lượt tại
. Ta có các khẳng định sau:
![]()
![]()
: Tứ giác
là hình bình hành.
Có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Xét
Vì
Vì
Vì nên
đều song song với
điều này suy ra
là hình bình hành.
Vậy tất cả các khẳng định đều đúng.
Hoàn thành khẳng định
Mẫu nhóm số liệu ghép nhóm là tập hợp:
Mẫu số liệu ghép nhóm là tập hợp các giá trị của số liệu được ghép nhóm theo một tiêu chí xác định.
Tìm độ dài nhóm dữ liệu
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Đáp án đúng là: 5.
Tính giá trị biểu thức
Cho phương trình
. Gọi
là nghiệm nhỏ nhất thuộc khoảng
của phương trình. Tính
.
Phương trình tương đương:
Vì nên
. Nghiệm lớn nhất của phương trình là
Vậy
Tính giới hạn dãy số
Giới hạn
bằng
Ta có:
.
Chọn đáp án đúng
Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?
Ta thấy ở dãy số có
nên đây là cấp số nhân với công bội
.
Xác định công bội của cấp số nhân
Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.
Giả sử là độ dài ba cạnh của tam giác ABC,
.
Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội nên
Hàm số liên tục
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Tìm dãy số tăng
Trong dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là dãy số tăng?
Vì là các dãy dương và tăng nên
là các dãy giảm
=> Loại các đáp án
Xét đáp án ta có:
=> Dãy số không phải dãy tăng.
Xét đáp án
=> Dãy số là dãy tăng.
Xác định sự đúng sai của các kết luận
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Xác định giao tuyến của hai mặt phẳng
Cho hình chóp tứ giác
đáy
là hình thang đáy nhỏ
,
,
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
S là điểm chung thứ nhất của hai mặt phẳng (1)
Xét mặt phẳng có:
=> là điểm chung thứ hai của hai mặt phẳng
(2)
Từ (1) và (2)
Xét sự đúng sai của các phát biểu
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Chọn khẳng định đúng
Dùng quy nạp chứng minh mệnh đề chứa biến
đúng với mọi số tự nhiên
(p là một
số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với
bằng:
Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với bằng
Tìm giao tuyến
Cho hình chóp
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có:
Tính giá trị biểu thức C
Giá trị của biểu thức
là:
Ta có:
Khi đó:
Tìm số mặt phẳng
Cho hai đường thẳng song song a và b. Có bao nhiêu mặt phẳng chứa a và song song với b?
Tất cả những mặt phẳng chứa a và không chứa b đều là những mặt phẳng song song với b.
Chọn đáp án đúng
Cho dãy số
với
. Chọn đáp án đúng.
Ta chứng minh bằng phương pháp quy nạp.
Với ta có:
Giả sử . Ta cần chứng minh
.
Thật vậy
Vì
Vì
Vậy hay dãy
bị chặn trên bởi
và bị chặn dưới bởi
.
Điền đáp án vào ô trống
Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:
Nữ | 6 | 7 | 9 | 8 | 10 | 10 |
Nam | 7 | 9 | 12 | 14 | 13 | 17 |
a) Khoảng biến thiên giá trị của nữ là: 4
Khoảng biến thiên giá trị của nam là: 10
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11
Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:
Nữ | 6 | 7 | 9 | 8 | 10 | 10 |
Nam | 7 | 9 | 12 | 14 | 13 | 17 |
a) Khoảng biến thiên giá trị của nữ là: 4
Khoảng biến thiên giá trị của nam là: 10
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11
a) Khoảng biến thiên giá trị của nữ là:
Khoảng biến thiên giá trị của nam là:
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là:
Tính giá trị biểu thức
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Xác định mệnh đề đúng
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Tính giới hạn M
Tính giới hạn
.
Ta có:
Tìm y để ba số lập thành một cấp số nhân
Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6
Ta có x = 6(x – 6) => x = 36/5
Từ đó suy ra y = 6x = 216/5
Tính giá trị biểu thức
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Tính S?
Tổng
có kết quả bằng?
Đặt
Tìm tập xác định của hàm số
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Tính giới hạn
Tính giới hạn
.
Ta có:
Vì nên
Do đó
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện
cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
PT có nghiệm?
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Tính trung vị của mẫu số liệu
Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:
Tuổi | Nhỏ hơn 10 | Nhỏ hơn 20 | Nhỏ hơn 30 | Nhỏ hơn 40 | Nhỏ hơn 50 | Nhỏ hơn 60 | Nhỏ hơn 70 | Nhỏ hơn 80 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi (năm) | (0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
|
Số người (nghìn người) | 2 | 3 | 4 | 3 | 2 | 1 | 0,5 | 0,1 | N = 15,6 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)
Chọn khẳng định đúng
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: