Tính chiều cao hình chóp
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 7: Quan hệ vuông góc trong không gian nha!
Tính chiều cao hình chóp
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Hoàn thiện mệnh đề
Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:
"a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp
"a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp
=> "a không thể vuông góc với mặt phẳng (P)" là sai.
Số đo góc hợp bởi đường thẳng SA và mặt phẳng (SDM)
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi
là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính ![]()
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Xác định mặt phẳng theo yêu cầu
Cho hình chóp
có đáy
là hình thoi tâm
,
. Mặt phẳng
vuông góc với mặt phẳng nào dưới đây?
Hình vẽ minh họa
Ta có: O là tâm hình thoi ABCD
Mặt khác (tính chất tam giác cân)
Và (tính chất hình thoi)
Từ (1) và (2) suy ra
Tính thể tích khối chóp
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Chọn khẳng định đúng?
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Chọn khẳng định sai?
Khẳng định nào sau đây là sai?
Mệnh đề sai là: “Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d ⊥ (α).”
Vì thiếu điều kiện “cắt nhau” của hai đường thẳng nằm trong (α).
Ví dụ đường thẳng a vuông góc với hai đường thẳng b và c nằm trong (α) nhưng b và c song song với nhau thì khi đó a chưa chắc vuông góc với (α).
Tìm giá trị x thỏa mãn điều kiện
Cho tam giác
và tam giác
nằm trên hai mặt phẳng vuông góc với nhau và
. Với giá trị nào của
thì hai mặt phẳng
và
?
Hình vẽ minh họa
Gọi I, J lần lượt là trung điểm của AB và CD
Suy ra mà
Do đó
Ta có:
Mặt khác nên tam giác
vuông cân tại J
Do đó
Vậy
Tan của góc giữa đường thẳng SC và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc giữa đường thẳng SC và (ABCD). Giá trị của tan α bằng:

+) Gọi H là trung điểm AB.
Vì tam giác ABC đều nên SH ⊥ AB
Ta có:
=> Hình chiếu của SC lên (ABCD) là HC.
(Vì tam giác SHC vuông tại H)
+) Ta có:
Xét tam giác SHC vuông tại H:
Vậy
Tính góc giữa đường thẳng A’B và mặt phẳng (A’B’C’)
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Tính độ dài cạnh SA
Cho hình vuông ABCD cạnh a và SA ⊥ (ABCD). Để góc giữa (SCB) và (SCD) bằng 60◦ thì độ dài cạnh SA là:
Hình vẽ minh họa:
Đặt SA = a.
Kẻ AM ⊥ SD, m ∈ SD, AN ⊥ SB, N ∈ SB, ta có:
Suy ra:
Do ∆SAD = ∆SAB (c.g.c) => AM = AN
Do đó => ((SCD); (SBC)) = 60◦ => (AM; AN) = 60◦
Xét tam giác SAD, ta có:
Nếu thì ∆AMN đều => AM = MN => x = a
Nếu thì
(Vô lý)
Vậy SA = a
Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Xác định điểm cách đều bốn đỉnh tứ diện
Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau. Điểm nào cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD?
Hình vẽ minh họa:
Ta có:
=> Tam giác ABD vuông tại B.
=> IA = IB = ID = AD/2 (với I là trung điểm của AD)
Ta có:
=> Tam giác BCD vuông tại C.
=> EA = EC = ED = AD/2 (E là trung điểm của AD)
Vậy I trùng với E
Vậy điểm cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD là trung điểm của đoạn thẳng AD.
Xác định tính đúng sai của các phát biểu đã cho
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Mệnh đề nào sau đây là đúng?
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau
Tính thể tích khối chóp tam giác
Cho hình chóp
có đáy
là tam giác vuông tại
. Hình chiếu của
lên mặt phẳng đáy là trung điểm
của
. Tính thể tích khối chóp
biết
.
Hình vẽ minh họa
Xét tam giác ABC vuông tại C ta có:
H là trung điểm của BC nên
Xét tam giác SBH vuông tại H có
Diện tích đáy ABC là
Thể tích khối chóp là
Chọn đáp án đúng
Cho hình chóp
có đáy là hình vuông
cạnh bằng
và cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
. Khi đó
bằng:
Ta có:
Lại có
Xét tam giác có
Theo định lí Pythagore đảo suy ra tam giác vuông tại
Suy ra hay
Chọn đáp án đúng
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Tính khoảng cách giữa hai đường thẳng CK, A’D
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.
Hình vẽ minh họa:
Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’
=> KD’ là đường trung bình của ∆PCC’
=> D’ là trung điểm của PC’
Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’
Ta có: A’D // B’C => A’D // (AKB’)
=> d(CK, A’D) = d (A’,(CKB’)) = d(C’,(CPB’))
Xét tứ diện PCC’B’ ta có:
C’P, C’B và C’B đôi một vuông góc với nhau
Đặt d(C’, (CPB’)) = x, thì:
Xác định thể tích khối lăng trụ
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Chọn đáp án đúng
Cho hình chóp tứ giác
có
và đáy là hình vuông. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Phân tích sự đúng sai của các kết luận
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Tính khoảng cách d từ A đến mặt phẳng (SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
Hình vẽ minh họa:

Gọi M là trung điểm BC
=>AM ⊥ BC và
Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)
Ta có:
Từ (1) và (2)
Xét tam giác SAM ta có:
Vậy
Tìm khẳng định sai
Cho hình chóp tứ giác đều
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB suy ra
Tam giác SMO vuông tại O nên
Do đó mặt phẳng không vuông góc với
.
Tính khoảng cách
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Mệnh đề nào sau đây đúng?
Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.
Chọn kết luận đúng
Cho tứ diện đều
. Gọi trung điểm của các cạnh
lần lượt là
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Gọi P là trung điểm của BD.
Ta có: lần lượt là đường trung bình của tam giác
.
Do đó:
Vì là tứ diện đều
nên tam giác
là tam giác đều.
Chọn mệnh đề đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a, SO ⊥ (ABCD) và
. Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
Hình vẽ minh họa:
Gọi Q là trung điểm BC => OQ ⊥ BC.
Ta có:
Do đó ((SBC), (ABCD)) = (SQ, OQ) =
Tam giác vuông SOQ ta có:
Vậy mặt phẳng (SBC) hợp với mặt đáy (ABCD) một góc 60◦
Tính thể tích V của khối hộp chữ nhật
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Chọn đáp án đúng
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Tang của góc giữa mặt bên và mặt đáy
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng α. Tang của góc giữa mặt bên và mặt đáy bằng:

Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)
=>
Gọi M là trung điểm của BC => OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.
Tính góc giữa hai đường thẳng
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Tính thể tích khối chóp
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Tính khoảng các d giữa hai đường thẳng BB' và A'H
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H
Do nên
Ta có:
Nên
Vậy khoảng cách
Tìm bước giải sai của bài toán
Cho tứ diện ABCD có AB = AC = AD,
. Hãy chứng mình
.
Một bạn chứng mình qua các bước sau:
Bước 1. ![]()
Bước 2. ![]()
Bước 3. ![]()
Bước 4. Suy ra ![]()
Theo em. Lời giải trên sai từ:
Bài toán sai từ bước 1 vì
Theo quy tắc trừ hai vectơ ta có:
Tính góc giữa hai mặt phẳng (MBD) và (ABCD)
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Tính khoảng cách từ C’ đến mặt phẳng (A’BM)
Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.
Hình vẽ minh họa:
Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.
Dựng hình chữ nhật AND
Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)
Ta có: C’N // (A’MB) (do C’N // MB)
=> d(C’, (A’BM)) = d(N, (A’BM))
Mà GN // (A’BM) (do GN // A’M)
=> d(N, (A’BM)) = d(G, (A’BM))
=> d(C’, (A’BM)) = d(G,(A’BM))
Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.
BD ⊥ GI (do ANBD là hình chữ nhật)
BD ⊥ A’G (do A’G ⊥ (ABC))
=> BD ⊥ (A’GI) => BD ⊥ GH
Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH
Tính GH: ∆ABC đều, cạnh a
=>
Xét tam giác AA’G vuông tại G
=>
Ta lại có: GNBI là hình chữ nhật =>
Xét tam giác A’GI vuông tại G có GH ⊥ A’I
=>
Suy ra
Điền đáp án vào ô trống
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Tính góc giữa hai đường thẳng BA' và CD
Cho hình lập phương
. Góc giữa hai đường thẳng
và
là:
Hình vẽ minh họa
Ta có:
Vì là hình vuông nên
Tính thể tích khối chóp
Cho một khối chóp
có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: