Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 7: Quan hệ vuông góc trong không gian nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 2: Vận dụng

    Chọn đáp án đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;D; AB =
a;AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI)(SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60^{0}. Tính khoảng cách từ trung điểm của cạnh SD đến mặt phẳng (SBC)?

    Từ I kẻ IP\bot BC \Rightarrow BC\bot
SP

    \Rightarrow \left( (SBC);(ABCD) ight)
= \widehat{SPI} = 60^{0}

    Gọi K là trung điểm của SD.

    Gọi Q = BC \cap AD, kẻ IH\bot SP

    Ta có:

    d\left( K;(SBC) ight) =
\frac{1}{2}d\left( D;(SBC) ight)

    = \frac{1}{4}d\left( I;(SBC) ight) =
\frac{1}{4}IH

    Xét tam giác ICQ có IP = \frac{CD.IQ}{QC}
= \frac{2a}{\sqrt{5}}

    Xét tam giác SIP vuông tại I có SI =
IP.tan60^{0} = \frac{2a\sqrt{3}}{5}

    \frac{1}{IH^{2}} = \frac{1}{IS^{2}} +
\frac{1}{IP^{2}} \Rightarrow IH = \frac{3a^{2}}{5}

    \Rightarrow IH =
\frac{a\sqrt{15}}{5}

    \Rightarrow d\left( K;(SBC) ight) =
\frac{a\sqrt{15}}{20}

  • Câu 3: Vận dụng cao

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 4: Nhận biết

    Xác định góc giữa SB và mặt phẳng (ABCD)

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 5: Vận dụng

    Chọn mệnh đề đúng

    Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).

    Gọi M là trung điểm của SD.

    Tam giác SCD đều nên CM ⊥ SD.

    Tam giác SBD có SB = SD = a, BD =
a\sqrt{2} nên vuông tại S

    => SB ⊥ SD => OM ⊥ SD

    => ((SBD),(SCD)) = (OM, CM) = \widehat{OMC}

    Ta có: \left\{ \begin{matrix}
OC\bot BD \\
OC\bot SO \\
\end{matrix} ight.\  \Rightarrow OC\bot(SBD) \Rightarrow OC\bot
OM

    Tam giác vuông MOC ta có:

    \tan\widehat{OMC} = \frac{OC}{OM} =
\sqrt{2}

  • Câu 6: Nhận biết

    Chọn kết luận chính xác

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 7: Thông hiểu

    Chọn kết luận đúng

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC =
a\sqrt{3}AA' = 3a. Chọn kết luận đúng về số đo góc giữa A'C(ABC)?

    Hình vẽ minh họa

    Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC

    Suy ra \left( A'C;(ABC) ight) =
(A'C;AC) = \widehat{A'CA}

    Ta có: \tan\widehat{A'CA} =
\frac{AA'}{AC} = \frac{3a}{a\sqrt{3}} = \sqrt{3}

    \Rightarrow \widehat{A'CA} = 60^{0}
\Rightarrow \left( A'C;(ABC) ight) = 60^{0}

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây đúng?

    Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?

    Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.

  • Câu 9: Nhận biết

    Xác định mặt phẳng

    Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B. Đường thẳng vuông góc với đáy ABC. Đường thẳng BC vuông góc với mặt phẳng nào sau đây?

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
BC\bot SA \\
BC\bot AB \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

  • Câu 10: Nhận biết

    Tính số đo góc giữa hai đường thẳng AB và CD

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh 2a, cạnh bên bằng 3a.

    Hình vẽ minh họa

    Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là \frac{(2a)^{2}\sqrt{3}}{4} và chiều cao AA' = 3a (vì lăng trụ là lăng trụ đứng)

    Vậy thể tích hình lăng trụ là: V =
\frac{(2a)^{2}\sqrt{3}}{4}.3a = 3\sqrt{3}a^{3}

  • Câu 12: Thông hiểu

    Tính giá trị tan α

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 13: Thông hiểu

    Tìm mệnh đề đúng

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 14: Vận dụng cao

    Tính thể tích khối lăng trụ

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 15: Vận dụng

    Tính cosin góc giữa KM và SQ

    Cho S.ABCD là hình chóp có đáy là hình chữ nhật. SA \bot \left( {ABCD} ight). Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết AB = a,AD = 2aKM = \frac{{a\sqrt {67} }}{6}. Tính cosin góc giữa KM và SQ.

    Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.

    Vậy MN \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {NK}  = \overrightarrow {NA}  + \overrightarrow {AB}  + \overrightarrow {BK}  \hfill \\   =  - \dfrac{1}{2}\overrightarrow {AD}  + \overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AD}  = \overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD}  \hfill \\ \end{matrix}

    Suy ra

    \begin{matrix}  N{K^2} = {\left( {\overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD} } ight)^2} = A{B^2} + \dfrac{1}{{36}}A{D^2} \hfill \\   = {a^2} + \dfrac{1}{{36}}.4{a^2} = \dfrac{{10}}{9}{a^2} \hfill \\ \end{matrix}

    Xét tam giác MNK vuông tại N (do MN \bot \left( {ABCD} ight)) ta có:

    \begin{matrix}  M{N^2} = M{K^2} - N{K^2} = \dfrac{{67}}{{36}}{a^2} - \dfrac{{10}}{9}{a^2} = \dfrac{3}{4}{a^2} \hfill \\   \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2} \Rightarrow SA = a\sqrt 3  \hfill \\ \end{matrix}

    Lại có

    \begin{matrix}  \overrightarrow {AQ}  = \overrightarrow {AD}  + \overrightarrow {DQ}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  \hfill \\   \Rightarrow A{Q^2} = {\left( {\overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB} } ight)^2} \hfill \\   = A{D^2} + \dfrac{9}{{16}}A{B^2} \hfill \\   = {(2a)^2} + \dfrac{9}{{16}}{a^2} = \dfrac{{73}}{{16}}{a^2} \hfill \\ \end{matrix}

    Xét tam giác SAQ vuông tại A nên

    \begin{matrix}  S{Q^2} = A{S^2} + A{Q^2} = 3{a^2} + \dfrac{{73}}{{16}}{a^2} = \dfrac{{121}}{{16}}{a^2} \hfill \\   \Rightarrow SQ = \dfrac{{11}}{4}a \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  \overrightarrow {KM}  = \overrightarrow {NM}  - \overrightarrow {NK}  = \dfrac{1}{2}\overrightarrow {AS}  - \overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AD}  \hfill \\  \overrightarrow {SQ}  = \overrightarrow {AQ}  - \overrightarrow {AS}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  - \overrightarrow {AS}  \hfill \\ \end{matrix}

    Khi đó

    \begin{matrix}  \overrightarrow {KM} .\overrightarrow {SQ}  =  - \dfrac{3}{4}A{B^2} + \dfrac{1}{6}A{D^2} - \dfrac{1}{2}A{S^2} \hfill \\   =  - \dfrac{3}{4}{a^2} + \dfrac{1}{6}.4{a^2} - \dfrac{1}{2}.3{a^2} = \dfrac{{ - 19}}{{12}}{a^2} \hfill \\ \end{matrix}

    Vậy

    \begin{matrix}  \cos \left( {KM,SQ} ight) = \left| {\cos \left( {\overrightarrow {KM} ,\overrightarrow {SQ} } ight)} ight| \hfill \\   = \dfrac{{\left| {\overrightarrow {KM} .\overrightarrow {SQ} } ight|}}{{KM.SQ}} = \dfrac{{\left| {\dfrac{{ - 19}}{{12}}{a^2}} ight|}}{{\dfrac{{a\sqrt {67} }}{6}.\dfrac{{11a}}{4}}} = \dfrac{{38}}{{11\sqrt {67} }} \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Tính diện tích thiết diện

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của BD'. Diện tích thiết diện tạo thành bằng:

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Ta có: EB
= ED' nên E thuộc mặt phẳng trung trực của BD'.

    Gọi F;G;H;I;K lần lượt là trung điểm của CD;CC';B'C';A'B';AA'

    Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của BD'

    Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD' là hình lục giác đều EFGHIK có cạnh bằng \frac{a\sqrt{2}}{2}.

    Vậy diện tích thiết diện là: S = 6.\left(
\frac{a\sqrt{2}}{2} ight)^{2}.\frac{\sqrt{3}}{4} =
\frac{3a^{2}\sqrt{3}}{4}

  • Câu 17: Nhận biết

    Xác định thể tích hình chóp

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 18: Thông hiểu

    Chọn khẳng định sai

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?

    Tam giác ABC cân tại B có M là trung điểm AC

    => BM ⊥ AC.

    Ta có: \left\{ \begin{matrix}
BM\bot AC \\
BM\bot SA \\
\end{matrix} ight. (do SA ⊥ (ABC)) => BM ⊥ (SAC) => (SBM) ⊥ (SAC).

    Ta có: \left\{ \begin{matrix}
BC\bot BA \\
BC\bot SA \\
\end{matrix} ight. (do SA ⊥ (ABC)) => BC ⊥ (SAB) => (SBC) ⊥ (SAB).

    Dùng phương pháp loại trừ thì khẳng định “(SAB) ⊥ (SAC)” là sai

  • Câu 19: Nhận biết

    Tìm tất cả các mặt phẳng thỏa mãn điều kiện

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 20: Nhận biết

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mênh đề nào đúng?

    Mệnh đề: “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.” Sai vì nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia.

    Mệnh đề: “Hai mặt phẳng phân biệt vuông góc với một mặt phẳng thứ ba thì song song với nhau.” sai vì còn trường hợp hai mặt phẳng cắt nhau.

    Mệnh đề: “Với mỗi điểm A ∊ (α) và mỗi điểm B ∊ (β) thì ta có đường thẳng AB vuông góc với giao tuyến d của (α) và (β).” Sai vì ít nhất nếu cả A và B đều thuộc giao tuyến của (α) và (β) thì AB trùng với (α) ⋂ (β).

  • Câu 21: Nhận biết

    Điều kiện để hai mặt phẳng vuông góc

    Điều kiện nào sau đây không phải là điều kiện cần và đủ để hai mặt phẳng (P) và (Q) vuông góc với nhau?

    Mỗi đường thẳng a nằm trong (P) đều có đường thẳng b nằm trong (Q) sao cho a vuông góc với b, khi đó (P) và (Q) có thể trùng nhau.

  • Câu 22: Thông hiểu

    Tính góc giữa AB và CD

    Cho tứ diện ABCD có hai mặt ABCABD là tam giác đều. Khi đó (AB;CD) bằng:

    Hình vẽ minh họa

    Ta có: I là trung điểm của AB.

    ABCABD là tam giác đều nên \left\{ \begin{matrix}
CI\bot AB \\
DI\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(CID) \Rightarrow AB\bot
CD

  • Câu 23: Nhận biết

    Tính thể tích khối chóp S.ABCD

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

  • Câu 24: Thông hiểu

    Kéo ghép đáp án đúng

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}

    Hình vẽ minh họa

    Ta có: AB//A'B'(A'B',B'C') = 90^{0} \Rightarrow
(AB,B'C') = 90^{0}

    Vì tứ giác ABCD là hình vuông nên (AC;BC) = 45^{0}

    Ta có: BC//B'C' nên (AC,B'C') = 45^{0}

    Ta có: A'C'//AC và tam giác AVB' là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó (A'C',B'C) = (AC,B'C) =
60^{0}

  • Câu 25: Thông hiểu

    Hoàn thành mệnh đề

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 26: Thông hiểu

    Khẳng định nào là khẳng định đúng

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 30^{0}

    Ta có: AM = \frac{AA'}{tan30^{0}} =
2a\sqrt{3}

    \Rightarrow BC = 2AM =
4a\sqrt{3}

    \Rightarrow S_{ABC} = \frac{1}{2}.AM.BC
= 12a^{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} = 24a^{3}

  • Câu 28: Nhận biết

    Tính chiều cao của hình chóp

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 29: Nhận biết

    Mệnh đề nào sau đây đúng?

    Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?

    Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).

  • Câu 30: Thông hiểu

    Xác định thể tích V

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 31: Vận dụng

    Góc giữa hai đường thẳng SB và AC trong mặt phẳng

    Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, SA = a\sqrt 3, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?

    Hình vẽ minh họa

    Góc giữa hai đường thẳng SB và AC trong mặt phẳng

    Lấy M là trung điểm của SD

    Góc cần tìm là góc giữa OM và SC

    Ta có MC là trung tuyến của tam giác SCD

    \begin{matrix}  M{C^2} = \dfrac{{S{C^2} + D{C^2}}}{2} - \dfrac{{S{D^2}}}{4} = 2{a^2} \hfill \\   \Rightarrow MC = a\sqrt 2  \hfill \\ \end{matrix}

    Xét tam giác MOC ta có:

    \begin{matrix}  \cos \widehat {MOC} = \dfrac{{M{O^2} + O{C^2} - M{C^2}}}{{2.MO.OC}} =  - \dfrac{1}{{2\sqrt 2 }} \hfill \\   \Rightarrow \alpha  \approx {69^0}17\prime  \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Tính thể tích khối chóp

    Cho một khối chóp có diện tích đáy bằng 8a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 8a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{8}{3}a^{3}

  • Câu 33: Thông hiểu

    Tính góc ϕ giữa hai mặt phẳng

    Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm SC. Tính góc ϕ giữa hai mặt phẳng (MBD) và (ABCD).

    Hình vẽ minh họa:

    Gọi M’ là trung điểm OC.

    Khi đó MM’ // SO => MM’ ⊥ (ABCD).

    Theo công thức diện tích hình chiếu, ta có:

    \begin{matrix}\cos\phi = \dfrac{S_{M'BD}}{S_{MBD}} = \dfrac{BD.MO}{BD.M'O} =\dfrac{MO}{M'O} = \dfrac{\sqrt{2}}{2} \hfill \\\Rightarrow \phi = 45^{0} \hfill \\\end{matrix}

  • Câu 34: Vận dụng

    Tính thể tích tứ diện AJQK

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 35: Nhận biết

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.

    Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”

  • Câu 36: Vận dụng cao

    Tổng khoảng cách d

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 1, cạnh bên bằng \sqrt{3}. Gọi I là tâm của đáy ABC, d’ là khoảng cách từ A đến mặt phẳng (SBC) và d’’ là khoảng cách từ I đến mặt phẳng (SBC). Tính d = d’ + d’’.

    Gọi I là tâm của đáy ABC

    => d' = 3d'' \Rightarrow d= 4d'' = 4IK

    Xét tam giác ABC đều cạnh a có tâm I

    => AM = \dfrac{\sqrt{3}}{2} \Rightarrow\left\{ \begin{matrix}AI = \dfrac{\sqrt{3}}{3} \\IM = \dfrac{\sqrt{3}}{6} \\\end{matrix} ight.

    Xét tam giác SAI vuông tại I

    SI^{2} = SA^{2} - AI^{2} = 3^{2} -\frac{1}{3} = \frac{8}{3}

    \Rightarrow SI =\frac{2\sqrt{6}}{3}

    Xét ∆SIM vuông tại I có:

    \frac{1}{IK^{2}} = \frac{1}{SI^{2}} +\frac{1}{IM^{2}} = \frac{8}{99}

    \Rightarrow IK = \frac{2\sqrt{22}}{33}\Rightarrow d = \frac{8\sqrt{22}}{33}

  • Câu 37: Thông hiểu

    Xác định thể tích khối chóp tứ giác

    Cho khối chóp S.ABCDSA\bot(ABCD); đáy ABCD là hình chữ nhật AB = a;AD = a\sqrt{3}. Tính thể tích khối chóp S.ABCD, biết mặt phẳng (SBC) tạo với mặt phẳng đáy một góc bằng 60^{0}.

    Hình vẽ minh họa

    Ta có: S_{ABCD} =
a^{2}\sqrt{3}

    \left\{ \begin{matrix}
(SBC) \cap (ABCD) = BC \\
BC\bot SB \subset (SBC) \\
BC\bot AB \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow \left( (SBC);(ABCD) ight) = (SB;AB)
= \widehat{SBA}

    Vậy \widehat{SBA} = 60^{0}

    Xét tam giác vuông SAB có

    \tan60^{0} = \frac{SA}{AB} \Rightarrow SA= AB.\tan60^{0} = a\sqrt{3}

    Vậy V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.a^{2}\sqrt{3}.a\sqrt{3} = a^{3}

  • Câu 38: Nhận biết

    Chọn mệnh đề sai

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 39: Thông hiểu

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Chọn mệnh đề sai

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)

    => SA ⊥ BC

    Xét tam giác ABC vuông tại B ta có:

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC

    Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)

    => AC ⊥ AB (vô lí)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo