Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Ôn tập chương 7 Quan hệ vuông góc trong không gian

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Ôn tập chương 7 Quan hệ vuông góc trong không gian sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính số đo góc giữa hai đường thẳng

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh bằng a. Gọi I;J lần lượt là trung điểm của SC;BC. Tính số đo góc giữa hai đường thẳng JICD?

    Hướng dẫn:

    Hình vẽ minh họa

    Từ giả thiết ta có: JI//AB (do IJ là đường trung bình tam giác SAB)

    \Rightarrow (IJ;CD) =(SB;AB)

    Mặt khác ta lại có tam giác SAB đều nên \widehat{SBA} = 60^{0}

    \Rightarrow (SB;AB) = 60^{0} \Rightarrow(IJ;CD) = 60^{0}

  • Câu 2: Vận dụng
    Chọn đáp án đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Tam giác SAB đều và SC= a\sqrt{2}. Hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với điểm H của AB. Cosin của góc giữa AC(SHD) bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Dựng CE\bot DH

    Ta có: SH\bot(ABCD) \Rightarrow SH\botCE

    \Rightarrow CE\bot(SDH)

    => SE là hình chiếu vuông góc của SC lên mặt phẳng (SHD)

    Do đó: Số đo của góc giữa SC lên mặt phẳng (SHD) bằng với số đo của góc \widehat{CSE}

    Ta có: \cos\widehat{CSE} =\frac{SE}{SC}

    \Rightarrow S_{CHD} =\frac{1}{2}S_{ABCD}

    \Rightarrow CE.HD = a^{2} \Rightarrow CE= \frac{a^{2}}{HD}

    \Rightarrow HD = \sqrt{AD^{2} + AH^{2}}= \frac{a\sqrt{5}}{2}

    \Rightarrow HD = \sqrt{AD^{2} + AH^{2}}= \frac{a\sqrt{5}}{2}

    \Rightarrow CE =\frac{2a\sqrt{5}}{2}

    \Rightarrow SE = \sqrt{SC^{2} - CE^{2}}= \frac{a\sqrt{30}}{5}

    \Rightarrow \cos\widehat{CSE} =\sqrt{\frac{3}{5}}

  • Câu 3: Nhận biết
    Tìm giao tuyến hai mặt phẳng

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hướng dẫn:

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 4: Thông hiểu
    Tính khoảng cách giữa hai đường thẳng

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 5: Nhận biết
    Chọn khẳng định đúng

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Do tam giác ABC cân tại A, M là trung điểm của BC nên BC\bot AM

    Ta có: \left\{ \begin{matrix}
BC\bot SA \\
BC\bot AM \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

  • Câu 6: Thông hiểu
    Tính giá trị của t

    Cho hai tam giác ACD;BCD nằm trên hai mặt phẳng vuông góc. Biết AC = AD = BC = BD = a, CD = 2t. Tính giá trị của t để góc tạo bởi hai mặt phẳng (ABC)(ABD) bằng 90^{0}?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của AB \Rightarrow \left\{ \begin{matrix}
CM\bot AB \\
DM\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(CDM)

    \left\{ \begin{matrix}
(CMD) \cap (ABC) = CM \\
(CMD) \cap (ABD) = DM \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(ABC);(ABD)}
ight) = \left( \widehat{CM;DM} ight) = \widehat{CMD} =
90^{0}

    Suy ra tam giác CMD vuông cân tại M.

    Suy ra CD = CM.\sqrt{2} \Rightarrow 2t =
\sqrt{t^{2} + a^{2}} \Rightarrow t = \frac{a\sqrt{3}}{3}

  • Câu 7: Thông hiểu
    Tính khoảng cách từ đường thẳng đến mặt phẳng

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Cho tứ diện ABCDAB =
m;(m > 0), các cạnh còn lại bằng nhau và bằng 4. Mặt phẳng (\alpha) chứa cạnh AB và vuông góc với cạnh CD tại I. Diện tích tam giác ABI lớn nhất bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: (\alpha)\bot CD \equiv I
\Rightarrow \left\{ \begin{matrix}
AI\bot CD \\
BI\bot CD \\
\end{matrix} ight.

    Theo giả thiết AC = AD = BC = BD = CD =
4cm ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4

    \Rightarrow IA = IB =
4.\frac{\sqrt{3}}{2} = 2\sqrt{3}

    Gọi H là trung điểm của AB ta có: IH\bot
ABIH = \sqrt{IA^{2} -
\frac{m^{2}}{4}} = \sqrt{12 - \frac{m^{2}}{4}}

    S_{ABI} = \frac{1}{2}IH.AB

    = \frac{1}{2}m.\sqrt{12 -
\frac{m^{2}}{4}}

    = \sqrt{\frac{m^{2}}{4}.\left( 12 -
\frac{m^{2}}{4} ight)} \leq 6

    Dấu bằng xảy ra khi và chỉ khi x =
2\sqrt{6}

    Vậy \max S_{ABI} = 6

  • Câu 9: Thông hiểu
    Tính độ dài MN

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 10: Nhận biết
    Tìm đáp án sai

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    ABCD là hình chữ nhật nên BD không vuông góc với AC

    Vậy BD không vuông góc với mặt phẳng (SAC)

  • Câu 11: Thông hiểu
    Tính diện tích tam giác

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA =
2a;SA\bot(ABCD). Tính diện tích tam giác SBC.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \Rightarrow BC\bot SA \\
AB\bot BC \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB) \Rightarrow
BC\bot SB

    Do đó tam giác SBC vuông tại B

    Ta có: SA\bot(ABCD) \Rightarrow SA\bot
AB

    => Tam giác SAB vuông tại A.

    \Rightarrow SB^{2} = SA^{2} + AB^{2} =
4a^{2} + a^{2} = 5a^{2}

    \Rightarrow SB = a\sqrt{5}

    \Rightarrow S_{SBC} = \frac{1}{2}SB.BC =
\frac{1}{2}.a.a\sqrt{5} = \frac{a^{2}\sqrt{5}}{2}

  • Câu 12: Nhận biết
    Tìm khẳng định không chính xác

    Khẳng định nào sau đây sai?

    Hướng dẫn:

    Đường thẳng d vuông góc với hai đường thẳng nằm trong (\alpha) thì d\bot(\alpha) chỉ đúng khi hai đường thẳng đó cắt nhau.

  • Câu 13: Thông hiểu
    Tìm mệnh đề đúng

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 14: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 15: Thông hiểu
    Tính số đo góc giữa đường thẳng và mặt phẳng

    Cho hình chóp S.ABCD có đáy ABC là tam giác vuông \widehat{ABC} = 60^{0}. Tam giác SBC là tam giác đều có cạnh bằng 2a và hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trung điểm của BC. Tính \left( SA;(ABC) ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm của BC

    Suy ra \left\{ \begin{matrix}SI\bot(ABC) \\SI = a\sqrt{3} \\\end{matrix} ight.

    SI\bot(ABC) nên hình chiếu của SA trên (ABC) là AI

    Do đó góc giữa SA và mặt phẳng (ABC) bằng góc giữa SA và AI bằng \widehat{SAI}

    Tma giác SAI vuông tại I ta có:

    SI = a\sqrt{3};AI = \frac{1}{2}BC =a

    \Rightarrow \tan\widehat{SAI} =\frac{SA}{AI} = \sqrt{3} \Rightarrow \widehat{SAI} = 60^{0}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (27%):
    2/3
  • Thông hiểu (53%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Kết nối tri thức với cuộc sống

Xem thêm