Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Giải bài tập Toán 10 SBT bài 1 chương 4

Lớp: Lớp 10
Môn: Toán
Dạng tài liệu: Giải bài tập
Loại File: PDF + Word
Phân loại: Tài liệu Tính phí

Toán 10 - Bất đẳng thức

VnDoc xin giới thiệu tới bạn đọc tài liệu Giải bài tập Toán 10 SBT bài 1 chương 4, tài liệu gồm 14 bài tập trang 106 kèm theo lời giải chi tiết sẽ giúp các bạn học sinh rèn luyện giải bài tập Toán lớp 10 một cách hiệu quả hơn. Mời các bạn học sinh tham khảo.

Giải bài tập Toán 10 SBT bài 1

Bài 1 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{x^4} + {y^4} \ge {x^3}y + x{y^3}\({x^4} + {y^4} \ge {x^3}y + x{y^3}\)

Gợi ý làm bài

{x^4} + {y^4} \ge {x^3}y + x{y^3} \Leftrightarrow {x^4} + {y^4} - {x^3}y - x{y^3} \ge 0\({x^4} + {y^4} \ge {x^3}y + x{y^3} \Leftrightarrow {x^4} + {y^4} - {x^3}y - x{y^3} \ge 0\)

\Leftrightarrow {x^3}(x - y) + {y^3}(y - x) \ge 0 \Leftrightarrow (x - y)({x^3} - {y^3}) \ge 0\(\Leftrightarrow {x^3}(x - y) + {y^3}(y - x) \ge 0 \Leftrightarrow (x - y)({x^3} - {y^3}) \ge 0\)

\Leftrightarrow {(x - y)^2}({x^2} + {y^2} + xy) \ge 0 \Leftrightarrow {(x - y)^2}({(x + {y \over 2})^2} + {{3{y^2}} \over 4}) \ge 0\(\Leftrightarrow {(x - y)^2}({x^2} + {y^2} + xy) \ge 0 \Leftrightarrow {(x - y)^2}({(x + {y \over 2})^2} + {{3{y^2}} \over 4}) \ge 0\) (đúng)

Bài 2 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{x^2} + 4{y^2} + 3{z^2} + 14 > 2x + 12y + 6z\({x^2} + 4{y^2} + 3{z^2} + 14 > 2x + 12y + 6z\)

Gợi ý làm bài

{x^2} + 4{y^2} + 3{z^2} + 14 > 2x + 12y + 6z\({x^2} + 4{y^2} + 3{z^2} + 14 > 2x + 12y + 6z\)

\Leftrightarrow {x^2} - 2x + 4{y^2} - 12y + 3({z^2} - 2z) + 14 > 0\(\Leftrightarrow {x^2} - 2x + 4{y^2} - 12y + 3({z^2} - 2z) + 14 > 0\)

\Leftrightarrow {(x - 1)^2}{(2y - 3)^2} + 3{(z - 1)^2} + 1 > 0\(\Leftrightarrow {(x - 1)^2}{(2y - 3)^2} + 3{(z - 1)^2} + 1 > 0\) (đúng)

Bài 3 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{a \over {\sqrt b }} + {b \over {\sqrt a }} \ge \sqrt a + \sqrt b\({a \over {\sqrt b }} + {b \over {\sqrt a }} \ge \sqrt a + \sqrt b\)

Gợi ý làm bài

Giải bài tập Toán 10 SBT bài 1 chương 4

\Leftrightarrow (\sqrt a + \sqrt b )(a + b - \sqrt {ab} ) \ge (\sqrt a + \sqrt b )\sqrt {ab}\(\Leftrightarrow (\sqrt a + \sqrt b )(a + b - \sqrt {ab} ) \ge (\sqrt a + \sqrt b )\sqrt {ab}\)

\Leftrightarrow (\sqrt a + \sqrt b )(a + b - 2\sqrt {ab} ) \ge 0\(\Leftrightarrow (\sqrt a + \sqrt b )(a + b - 2\sqrt {ab} ) \ge 0\)

\Leftrightarrow (\sqrt a + \sqrt b ){(\sqrt a - \sqrt b )^2} \ge 0\(\Leftrightarrow (\sqrt a + \sqrt b ){(\sqrt a - \sqrt b )^2} \ge 0\) (đúng)

Bài 4 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{1 \over a} + {1 \over b} \ge {4 \over {a + b}}\({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)

Gợi ý làm bài

Từ {1 \over a} + {1 \over b} \ge 2\sqrt {{1 \over {ab}}}\({1 \over a} + {1 \over b} \ge 2\sqrt {{1 \over {ab}}}\)a + b \ge 2\sqrt {ab}\(a + b \ge 2\sqrt {ab}\) suy ra

(a + b)({1 \over a} + {1 \over b}) \ge 4\((a + b)({1 \over a} + {1 \over b}) \ge 4\) hay {1 \over a} + {1 \over b} \ge {4 \over {a + b}}\({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)

Bài 5 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{{a + b + c + d} \over 4}\({{a + b + c + d} \over 4}\)\sqrt[4]{abcd}\(\sqrt[4]{abcd}\)

Gợi ý làm bài

Từ a + b \ge 2\sqrt {ab}\(a + b \ge 2\sqrt {ab}\)c + d \ge 2\sqrt {cd}\(c + d \ge 2\sqrt {cd}\) suy ra

a + b + c + d \ge 2(\sqrt {ab} + \sqrt {cd} )\(a + b + c + d \ge 2(\sqrt {ab} + \sqrt {cd} )\)

= > 2.2\sqrt {\sqrt {ab} .\sqrt {cd} }\(= > 2.2\sqrt {\sqrt {ab} .\sqrt {cd} }\)

=> {{a + b + c + d} \over 4}\(=> {{a + b + c + d} \over 4}\)\sqrt[4]{abcd}\(\sqrt[4]{abcd}\)

=> a + b + c + d \ge 2.2\sqrt {\sqrt {ab} .\sqrt {cd} }\(=> a + b + c + d \ge 2.2\sqrt {\sqrt {ab} .\sqrt {cd} }\)

=> {{a + b + c + d} \over 4}\(=> {{a + b + c + d} \over 4}\)\sqrt[4]{abcd}\(\sqrt[4]{abcd}\)

Bài 6 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{1 \over a} + {1 \over b} + {1 \over c} + {1 \over d} \ge {{16} \over {a + b + c + d}}\({1 \over a} + {1 \over b} + {1 \over c} + {1 \over d} \ge {{16} \over {a + b + c + d}}\)

Gợi ý làm bài

Từ a + b + c + d \ge\(a + b + c + d \ge\) \sqrt[4]{abcd}\(\sqrt[4]{abcd}\)

{1 \over a} + {1 \over b} + {1 \over c} + {1 \over d} \ge\({1 \over a} + {1 \over b} + {1 \over c} + {1 \over d} \ge\) 4\sqrt[4]{\frac{1}{abcd}}\(4\sqrt[4]{\frac{1}{abcd}}\)

Suy ra (a + b + c + d)({1 \over a} + {1 \over b} + {1 \over c} + {1 \over d}) \ge 16\((a + b + c + d)({1 \over a} + {1 \over b} + {1 \over c} + {1 \over d}) \ge 16\)

Hay {1 \over a} + {1 \over b} + {1 \over c} + {1 \over d} \ge {{16} \over {a + b + c + d}}\({1 \over a} + {1 \over b} + {1 \over c} + {1 \over d} \ge {{16} \over {a + b + c + d}}\)

Bài 7 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{a^2}b + {1 \over b} \ge 2a\({a^2}b + {1 \over b} \ge 2a\)

Gợi ý làm bài

{a^2}b + {1 \over b} \ge 2\sqrt {{a^2}b.{1 \over b}} = 2a\({a^2}b + {1 \over b} \ge 2\sqrt {{a^2}b.{1 \over b}} = 2a\)

Bài 8 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

(a + b)(b + c)(c + a) \ge 8abc\((a + b)(b + c)(c + a) \ge 8abc\)

Gợi ý làm bài

Từ a + b \ge 2\sqrt {ab} ,b + c \ge 2\sqrt {bc} ,c + a \ge 2\sqrt {ca}\(a + b \ge 2\sqrt {ab} ,b + c \ge 2\sqrt {bc} ,c + a \ge 2\sqrt {ca}\)

Suy ra: (a + b)(b + c)(c + a) \ge 8abc\((a + b)(b + c)(c + a) \ge 8abc\)

Bài 9 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{(\sqrt a + \sqrt b )^2} \ge 2\sqrt {2(a + b)\sqrt {ab} }\({(\sqrt a + \sqrt b )^2} \ge 2\sqrt {2(a + b)\sqrt {ab} }\)

Gợi ý làm bài

{(\sqrt a  + \sqrt b )^2} = a + b + 2\sqrt {ab}  \ge 2\sqrt {(a + b).2\sqrt {ab} }\({(\sqrt a + \sqrt b )^2} = a + b + 2\sqrt {ab} \ge 2\sqrt {(a + b).2\sqrt {ab} }\)

Bài 10 trang 106 Sách bài tập (SBT) Toán Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

{1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\({1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\)

Gợi ý làm bài

(a + b + c)({1 \over a} + {1 \over b} + {1 \over c}) = 1 + 1 + 1 + ({a \over b} + {b \over a}) + ({a \over c} + {c \over a}) + ({b \over c} + {c \over b})\((a + b + c)({1 \over a} + {1 \over b} + {1 \over c}) = 1 + 1 + 1 + ({a \over b} + {b \over a}) + ({a \over c} + {c \over a}) + ({b \over c} + {c \over b})\)

\ge 3 + 2 + 2 + 2 = 9 = > {1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\(\ge 3 + 2 + 2 + 2 = 9 = > {1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\)

Bài 11 trang 106 Sách bài tập (SBT) Toán Đại số 10

Tìm giá trị nhỏ nhất của hàm số

y = {4 \over x} + {9 \over {1 - x}}\(y = {4 \over x} + {9 \over {1 - x}}\) với 0 < x < 1.

Gợi ý làm bài

y = {{4(x + 1 - x)} \over x} + {{9(x + 1 - x)} \over {1 - x}}\(y = {{4(x + 1 - x)} \over x} + {{9(x + 1 - x)} \over {1 - x}}\)

=4 + 9 + {{4(1 - x)} \over x} + 9.{x \over {1 - x}} \ge 13 + 2\sqrt {4.{{(1 - x)} \over x}.9.{x \over {1 - x}}} = 25\(=4 + 9 + {{4(1 - x)} \over x} + 9.{x \over {1 - x}} \ge 13 + 2\sqrt {4.{{(1 - x)} \over x}.9.{x \over {1 - x}}} = 25\)

=> y \ge 25,\forall x \in (0;1)\(=> y \ge 25,\forall x \in (0;1)\)

Đẳng thức y = 25 xảy ra khi và chỉ khi

\left\{ \matrix{{{4(1 - x)} \over x} = {{9x} \over {1 - x}} = 6 \hfill \cr x \in (0;1) \hfill \cr} \right.\(\left\{ \matrix{{{4(1 - x)} \over x} = {{9x} \over {1 - x}} = 6 \hfill \cr x \in (0;1) \hfill \cr} \right.\)

hay x = {2 \over 5}\(x = {2 \over 5}\)

Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đạt tại x = {2 \over 5}\(x = {2 \over 5}\)

Bài 12 trang 106 Sách bài tập (SBT) Toán Đại số 10

Tìm giá trị lớn nhất của hàm số

y = 4{x^3} - {x^4}\(y = 4{x^3} - {x^4}\) với 0 \le x \le 4\(0 \le x \le 4\)

Gợi ý làm bài

y = 4{x^3} - {x^4} = {x^3}(4 - x)\(y = 4{x^3} - {x^4} = {x^3}(4 - x)\)

=> 3y = x.x.x(12 - 3x) \le {({{x + x} \over 2})^2}{({{x + 12 - 3x} \over 2})^2}\(=> 3y = x.x.x(12 - 3x) \le {({{x + x} \over 2})^2}{({{x + 12 - 3x} \over 2})^2}\)

= > 48 \le {{\rm{[}}2x(12 - 2x){\rm{]}}^2} \le {({{2x + 12 - 2x} \over 2})^4} = {6^4}\(= > 48 \le {{\rm{[}}2x(12 - 2x){\rm{]}}^2} \le {({{2x + 12 - 2x} \over 2})^4} = {6^4}\)

= > y \le {{{6^4}} \over {48}} = 27,\forall x \in {\rm{[}}0;4]\(= > y \le {{{6^4}} \over {48}} = 27,\forall x \in {\rm{[}}0;4]\)

y = 27 \Leftrightarrow \left\{ \matrix{x = x \hfill \cr x = 12 - 3x \hfill \cr 2x = 12 - x \hfill \cr x \in {\rm{[}}0;4] \hfill \cr} \right. \Leftrightarrow x = 3\(y = 27 \Leftrightarrow \left\{ \matrix{x = x \hfill \cr x = 12 - 3x \hfill \cr 2x = 12 - x \hfill \cr x \in {\rm{[}}0;4] \hfill \cr} \right. \Leftrightarrow x = 3\)

Vậy giá trị lớn nhất của hàm số đã cho bằng 27 đạt được khi x = 3.

Bài 13 trang 106 Sách bài tập (SBT) Toán Đại số 10

Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó

y = \sqrt {x - 1} + \sqrt {5 - x}\(y = \sqrt {x - 1} + \sqrt {5 - x}\)

Gợi ý làm bài

Vế phải có nghĩa khi 1 \le x \le 5\(1 \le x \le 5\)

Ta có: {y^2} = {(\sqrt {x - 1} + \sqrt {5 - x} )^2} = 4 + 2\sqrt {(x - 1)(5 - x)}\({y^2} = {(\sqrt {x - 1} + \sqrt {5 - x} )^2} = 4 + 2\sqrt {(x - 1)(5 - x)}\)

Giải bài tập Toán 10 SBT bài 1 chương 4

Hơn nữa y = 2 \Leftrightarrow (x - 1)(5 - x) = 0 \Leftrightarrow \left[ \matrix{x = 1 \hfill \cr x = 5 \hfill \cr} \right.$\(y = 2 \Leftrightarrow (x - 1)(5 - x) = 0 \Leftrightarrow \left[ \matrix{x = 1 \hfill \cr x = 5 \hfill \cr} \right.$\)

y = 2\sqrt 2 \Leftrightarrow x - 1 = 5 - x \Leftrightarrow x = 3\(y = 2\sqrt 2 \Leftrightarrow x - 1 = 5 - x \Leftrightarrow x = 3\)

Vậy giá trị lớn nhất của hàm số đã cho bằng 2\sqrt 2\(2\sqrt 2\) khi x = 3, giá trị nhỏ nhất của hàm số đã cho bằng 2 khi x = 1 hoặc x = 5.

Bài 14 trang 106 Sách bài tập (SBT) Toán Đại số 10

Chứng minh rằng:

\left| {x - z} \right| \le \left| {x - y} \right| + \left| {y - z} \right|,\forall x,y,z\(\left| {x - z} \right| \le \left| {x - y} \right| + \left| {y - z} \right|,\forall x,y,z\)

Gợi ý làm bài

\left| {x - z} \right| = \left| {(x - y) + (y - z)} \right| \le \left| {x - y} \right| + \left| {y - z} \right|\(\left| {x - z} \right| = \left| {(x - y) + (y - z)} \right| \le \left| {x - y} \right| + \left| {y - z} \right|\)

-----------------------------

Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Giải bài tập Toán 10, Giải bài tập Vật Lí 10, Giải bài tập Sinh học 10, Giải bài tập Hóa học 10 mà VnDoc tổng hợp và đăng tải.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Giải Vở BT Toán 10

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm