Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải bài tập Toán 10 SBT bài 1 chương 1

Toán 10 - Mệnh đề

VnDoc xin giới thiệu tới bạn đọc tài liệu Giải bài tập Toán 10 SBT bài 1 chương 1, tài liệu kèm theo đáp án sẽ giúp các bạn học sinh rèn luyện giải bài tập Toán 10 một cách hiệu quả hơn. Mời thầy cô và các bạn học sinh cùng tham khảo.

Giải bài tập Toán 10 SBT bài 1

Bài 1 trang 7 Sách bài tập (SBT) Toán Đại số 10

Trong các câu sau, câu nào là một mệnh đề, câu nào là một mệnh đề chứa biến?

a) 1 + 1 = 3

b) 4+x<3

c) \frac{3}{2}\(\frac{3}{2}\) có phải là một số nguyên không?

d) \sqrt{5}\(\sqrt{5}\) là một số vô tỉ.

Gợi ý làm bài

a) Là một mệnh đề;

b) Là một mệnh đề chứa biến;

c) Không là mệnh đề, không là mệnh đề chứa biến;

d) Là một mệnh đề.

Bài 2 trang 7 Sách bài tập (SBT) Toán Đại số 10

Xét tính đúng sai của mỗi mệnh đề sau và phát biểu phủ định của nó.

a) \sqrt 3 + \sqrt 2 = {1 \over {\sqrt 3 - \sqrt 2 }};\(a) \sqrt 3 + \sqrt 2 = {1 \over {\sqrt 3 - \sqrt 2 }};\)

b) {\sqrt 2 - \sqrt {18} )^2} > 8\(b) {\sqrt 2 - \sqrt {18} )^2} > 8\)

c) {(\sqrt 3 + \sqrt {12} )^2}\({(\sqrt 3 + \sqrt {12} )^2}\) là một số hữu tỉ;

d) x =2 là một nghiệm của phương trình {{{x^2} - 4} \over {x - 2}} = 0\({{{x^2} - 4} \over {x - 2}} = 0\)

Gợi ý làm bài

a) Mệnh đề đúng. Phủ định là ''\sqrt 3 + \sqrt 2 \ne {1 \over {\sqrt 3 - \sqrt 2 }}\(\sqrt 3 + \sqrt 2 \ne {1 \over {\sqrt 3 - \sqrt 2 }}\)'', mệnh đề này sai.

b) Mệnh đề sai, vì {(\sqrt 2 - \sqrt {18} )^2} = 8.\({(\sqrt 2 - \sqrt {18} )^2} = 8.\)

Phủ định là “{(\sqrt 2 - \sqrt {18} )^2} \le 8\({(\sqrt 2 - \sqrt {18} )^2} \le 8\)”, mệnh đề này đúng.

c) Mệnh đề đúng, vì {(\sqrt 2 - \sqrt {18} )^2}\({(\sqrt 2 - \sqrt {18} )^2}\) là một số vô tỉ”, mệnh đề này sai.

d) Mệnh đề sai.

Phủ định là “x = 2 không là nghiệm của phương trình {{{x^2} - 4} \over {x - 2}} = 0\({{{x^2} - 4} \over {x - 2}} = 0\)”, mệnh đề này đúng.

Bài 3 trang 7 Sách bài tập (SBT) Toán Đại số 10

Tìm hai giá trị thực của x để từ mỗi câu sau ta được một mệnh đề đúng và một mệnh đề sai.

a) x < - x;\(x < - x;\)

b) x < {1 \over x};\(x < {1 \over x};\)

c) x = 7x;\(x = 7x;\)

d) {x^2} \le 0\({x^2} \le 0\)

Gợi ý làm bài

a) Với x = -1 ta được mệnh đề -1 < 1 (đúng);

Với x = 1 ta được mệnh đề 1 < -1 (sai).

b) Với x = {1 \over 2}\(x = {1 \over 2}\) ta được mệnh đề {1 \over 2} < 2\({1 \over 2} < 2\)(đúng);

Với x = 2 ta được mệnh đề 2 < {1 \over 2}\(2 < {1 \over 2}\) (sai).

c) x = 0, x = 1.

d) x = 0, x = 1.

Bài 4 trang 8 Sách bài tập (SBT) Toán Đại số 10

Phát biểu phủ định của các mệnh đề sau và xét tính đúng sai của chúng.

a) P: “15 không chia hết cho 3”;

b) Q: "\sqrt{2}>1\(\sqrt{2}>1\)"

Gợi ý làm bài

a) \bar{P}\(\bar{P}\) là mệnh đề “15 chia hết cho 3”; P sai, \bar{P}\(\bar{P}\)đúng.

b) \bar{Q}\(\bar{Q}\)là mệnh đề "\sqrt{2}<1\(\sqrt{2}<1\)". Q đúng, \bar{Q}\(\bar{Q}\)sai.

Bài 5 trang 8 Sách bài tập (SBT) Toán Đại số 10

Lập mệnh đề P => Q và xét tính đúng sai của nó, với

a) P: “2 < 3”, Q: “-4 < -6”;

b) P: “4 = 1”, Q: “3 = 0”;

Gợi ý làm bài

a) “Nếu 2 < 3 thì -4 < -6”. Mệnh đề sai.

b) “Nếu 4 = 1 thì 3 = 0”. Mệnh đề đúng.

Bài 6 trang 8 Sách bài tập (SBT) Toán Đại số 10

Cho a là số tự nhiên, xét các mệnh đề P: “a có tận cùng là 0”, Q: “a chia hết cho 5”.

a) Phát biểu mệnh đề P => Q và mệnh đề đảo của nó;

b) Xét tính đúng sai của cả hai mệnh đề trên.

Gợi ý làm bài

a) (P =>Q): “Nếu a có tận cùng bằng 0 thì a chia hết cho 5”. Mệnh đề đảo (Q=>P): “Nếu a chia hết cho 5 thì a có tận cùng bằng 0”.

b) (P=>Q) đúng, (Q=>P) sai.

Bài 7 trang 8 Sách bài tập (SBT) Toán Đại số 10

Với mỗi số thực x, xét các mệnh đề P: “”, Q: “x = 1”

a) Phát biểu mệnh đề P => Q và mệnh đề đảo của nó;

b) Xét tính đúng sai của mệnh đề Q => P;

c) Chỉ ra một giá trị của x mà mệnh đề P => Q sai.

Gợi ý làm bài

a) (P=>Q): "Nếu x2=1 thì x =1”. Mệnh đề đảo là: “Nếu x = 1 thì x2=1 thì x =1”.

b) Mệnh đề đảo “Nếu x = 1 thì x2=1 thì x =1” là đúng.

c) Với x = -1 thì mệnh đề (P=>Q) sai.

Bài 8 trang 8 Sách bài tập (SBT) Toán Đại số 10

Với mỗi số thực x, xét các mệnh đề P: “x là một số hữu tỉ”, Q: “là một số hữu tỉ”.

a) Phát biểu mệnh đề P => Q và xét tính đúng sai của nó;

b) Phát biểu mệnh đề đảo của mệnh đề trên;

c) Chỉ ra một giá trị của x mà mệnh đề đảo sai.

Gợi ý làm bài

a) (P=>Q): “Nếu x là một số hữu tỉ thì x2 cũng là một số hữu tỉ”. Mệnh đề đúng.

b) Mệnh đề đảo là “Nếu x2 là một số hữu tỉ thì x là một số hữu tỉ”.

c) Chẳng hạn, với x=\sqrt{2}\(x=\sqrt{2}\) mệnh đề này sai.

Bài 9 trang 8 Sách bài tập (SBT) Toán Đại số 10

Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”.

a) Phát biểu mệnh đề P => Q và mệnh đề đảo của nó;

b) Xét tính đúng, sai của cả hai mệnh đề trên.

Gợi ý làm bài

a) (P =>Q): “Nếu AB = AC thì tam giác ABC cân”.

Mệnh đề đảo (Q =>P): “Nếu tam giác ABC cân thì AB = AC”.

b) (P=>Q) đúng, (Q=>P) sai

Bài 10 trang 8 Sách bài tập (SBT) Toán Đại số 10

Cho tam giác ABC. Phát biểu mệnh đề đảo của các mệnh đề sau và xét tính đúng sai của chúng.

a) Nếu AB = BC = CA thì ABC là một tam giác đều;

b) Nêu AB > BC thì \hat{C}\(\hat{C}\) >\hat{A}\(\hat{A}\)

c) Nếu \hat{C}\(\hat{C}\)=900 thì ABC là một tam giác vuông.

Gợi ý làm bài

a) “Nếu ABC là một tam giác đều thì AB = BC = CA”, cả hai mệnh đề đều đúng.

b) “Nếu \hat{C}\(\hat{C}\)>\hat{A}\(\hat{A}\) thì AB > BC”. Cả hai mệnh đề đều đúng.

Bài 11 trang 9 Sách bài tập (SBT) Toán Đại số 10

Sử dụng khái niệm “điều kiện cần”, hoặc “điều kiện đủ”, hoặc “điều kiện cần và đủ” (nếu có thể) hãy phát biểu các mệnh đề trong bài tập 10.

Gợi ý làm bài

a) Điều kiện cần và đủ để tam giác ABC đều là AB = BC = CA.

b) Điều kiện cần và đủ để AB > BC là \hat{C}\(\hat{C}\) >\hat{A}\(\hat{A}\)

c) Điều kiện đủ để tam giác ABC vuông là \hat{A}\(\hat{A}\)=900

Bài 12 trang 9 Sách bài tập (SBT) Toán Đại số 10

Cho tứ giác ABCD. Phát biểu một điều kiện cần và đủ để

a) ABCD là một hình bình hành;

b) ABCD là một hình chữ nhật;

c) ABCD là một hình thoi.

Gợi ý làm bài

a) Tứ giác ABCD là một hình bình hành khi và chỉ khi AB//CD và AB = CA.

b) Tứ giác ABCD là một hình chữ nhật khi và chỉ khi nó là một hình bình hành và có một góc vuông.

c) Tứ giác ABCD là một hình thoi khi và chỉ khi nó là một hình bình hành và có hai đường chéo vuông góc với nhau.

Bài 13 trang 9 Sách bài tập (SBT) Toán Đại số 10

Cho đa thức. Xét mệnh đề “Nếu thì f(x) có một nghiệm bằng 1”. Hãy phát biểu mệnh đề đảo của mệnh đề trên. Nêu một điều kiện cần và đủ để f(x) có một nghiệm bằng 1.

Gợi ý làm bài

Mệnh đề đảo là: “Nếu f(x) có một nghiệm bằng 1 thì a + b + c = 0”, “Điều kiện cần và đủ để f(x)=ax2+bx+c có một nghiệm bằng 1 là a + b + c = 0”

Bài 14 trang 9 Sách bài tập (SBT) Toán Đại số 10

Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau

a) Có một số nguyên bằng bình phương của nó;

b) Mọi số (thực) cộng với 0 đều bằng chính nó;

c) Có một số hữu tỉ nhỏ hơn nghịch đảo của nó;

d) Mọi số tự nhiên đều lớn hơn 0.

Gợi ý làm bài

a) ∃a∈Z:a=a2

b) ∀x∈R:x+0=x

c) ∃x∈Q:x<\frac{1}{x}\(\frac{1}{x}\)

d) ∀n∈N:n>0

Bài 15 trang 9 Sách bài tập (SBT) Toán Đại số 10

Phát biểu thành lời các mệnh đề sau và xét tính đúng sai của chúng.

a) \forall x \in R:{x^2} \le 0;\(\forall x \in R:{x^2} \le 0;\)

b) \exists x \in R:{x^2} \le 0;\(\exists x \in R:{x^2} \le 0;\)

c) \forall x \in R:{{{x^2} - 1} \over {x - 1}} = x + 1;\(\forall x \in R:{{{x^2} - 1} \over {x - 1}} = x + 1;\)

d) \exists x \in R:{{{x^2} - 1} \over {x - 1}} = x + 1;\(\exists x \in R:{{{x^2} - 1} \over {x - 1}} = x + 1;\)

e) \forall x \in R:{x^2} + x + 1 > 0;\(\forall x \in R:{x^2} + x + 1 > 0;\)

g) \exists x \in R:{x^2} + x + 1 > 0;\(\exists x \in R:{x^2} + x + 1 > 0;\)

Gợi ý làm bài

a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai).

b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng).

c) Với mọi số thực x, {{{x^2} - 1} \over {x - 1}} = x + 1\({{{x^2} - 1} \over {x - 1}} = x + 1\) (mệnh đề sai);

d) Có một số thực x, mà {{{x^2} - 1} \over {x - 1}} = x + 1\({{{x^2} - 1} \over {x - 1}} = x + 1\) (mệnh đề đúng);

e) Với mọi số thực x, {x^2} + x + 1 > 0\({x^2} + x + 1 > 0\) (mệnh đề đúng);

g) Có một số thực x, mà {x^2} + x + 1 > 0\({x^2} + x + 1 > 0\) (mệnh đề đúng).

Bài 16 trang 9 Sách bài tập (SBT) Toán Đại số 10

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

a) ∀x∈R:x.1=x;

b) ∀x∈R:x.x=1;

c) ∀n∈Z:n≤n2

Gợi ý làm bài

a) ∀x∈R:x.1=x. Mệnh đề sai.

b) ∀x∈R:x.x=1. Mệnh đề đúng.

c) ∀n∈Z:n≤n2. Mệnh đề đúng.

Bài 17 trang 9 Sách bài tập (SBT) Toán Đại số 10

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

a) Mọi hình vuông đều là hình thoi;

b) Có một tam giác cân không phải là tam giác đều.

Gợi ý làm bài

a) Có ít nhất một hình vuông không phải là hình thoi. Mệnh đề sai.

b) Mọi tam giác cân là tam giác đều. Mệnh đề sai.

-----------------------------

Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Giải bài tập Toán 10, Giải bài tập Vật Lí 10, Giải bài tập Sinh học 10, Giải bài tập Hóa học 10 mà VnDoc tổng hợp và đăng tải.

Chia sẻ, đánh giá bài viết
2
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Giải Vở BT Toán 10

    Xem thêm