Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Tính chất ba đường trung trực của tam giác

Chuyên đề Toán học lớp 7: Tính chất ba đường trung trực của tam giác được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 7 hiệu quả hơn. Mời các bạn tham khảo.

Chuyên đề: Tính chất ba đường trung trực của tam giác

A. Lý thuyết

1. Đường trung trực của tam giác

• Trong một tam giác, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác đó.

Ví dụ: a là đường trung trực ứng với cạnh BC của tam giác ABC.

• Mỗi tam giác có ba đường trung trực.

chuyên đề toán 7

Tính chất: Trong một tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh này.

2. Tính chất ba đường trung trực của tam giác

Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Điểm O là giao điểm ba đường trung trực của tam giác ABC, ta có OA = OB = OC

Chú ý: Vì giao điểm O của ba đường trung trực của tam giác ABC cách đều ba đỉnh của tam giác đó nên có một đường tròn tâm O đi qua ba đỉnh A, B, C. Ta gọi đường tròn đó là đường tròn ngoại tiếp tam giác ABC.

chuyên đề toán 7

B. Trắc nghiệm & Tự luận

I. Câu hỏi trắc nghiệm

Bài 1: Cho ΔABC, hai đường cao BD và CE. Gọi M là trung điểm của BC. Em hãy chọn câu sai:

A. BM = MC

B. ME = MD

C. DM = MB

D. M không thuộc đường trung trực của DE

chuyên đề toán 7

Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Vì M là trung điểm của BC (gt) suy ra BM = MC (tính chất trung điểm), loại đáp án A.

Xét ΔBCE có M là trung điểm của BC (gt) suy ra EM là trung tuyến

⇒ EM = BC/2 (1) (trong tam giác vuông đường trung tuyến ứng cới cạnh huyền bằng nửa cạnh ấy)

Xét ΔBCD có M là trung điểm của BC (gt) suy ra DM là trung tuyến

⇒ DM = MB = BC/2 (2) (trong tam giác vuông đường trung tuyến ứng cới cạnh huyền bằng nửa cạnh ấy) nên loại đáp án C

Từ (1) và (2) ⇒ EM = DM ⇒ M thuộc đường trung trực của DE. Loại đáp án B, chọn đáp án D

Chọn đáp án D

Bài 2: Cho ΔABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng

A. ΔABO = ΔCOE

B. ΔBOA = ΔCOE

C. ΔAOB = ΔCOE

D. ΔABO = ΔCEO

Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Xét tam giác ΔAOB và ΔCOE có

+ OA = OC (vì O thuộc đường trung trực của AC )

+ OB = OE (vì O thuộc đường trung trực của BE )

+ AB = CE (giả thiết)

Do đó ΔAOB = ΔCOE (c-c-c)

Chọn đáp án C

Bài 3: Cho ΔABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng

A. AO là đường trung tuyến của tam giác ABC

B. AO là đường trung trực của tam giác ABC

C. AO ⊥ BC

D. AO là tia phân giác của góc A

Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Bài 4: Cho ΔABC trong đó ∠A = 100°. Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự tại E và F. Tính ∠EAF .

A. 20° B. 30° C. 40° D. 50°

Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Bài 5: Cho ΔABC vuông tại A, kẻ đường cao AH. Trên cạnh AC lấy điểm K sao cho AK = AH. Kẻ KD ⊥ AC (D ∈ BC) . Chọn câu đúng

A. ΔAHD = ΔAKD

B. AD là đường trung trực của đoạn thẳng HK

C. AD là tia phân giác của góc HAK

D. Cả A, B, C đều đúng

Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Xét tam giác vuông AHD và tam giác vuông AKD có:

+ AH = AK (gt)

+ AD chung

Suy ra ΔAHD = ΔAKD (ch-cgv) nên A đúng

Từ đó ta có HD = DK; ∠HAD = ∠DAK suy ra AD là tia phân giác của góc HAK nên C đúng

Ta có AH = AK (gt) và HA = DK (cmt) suy ra AD là đường trung trực của đoạn thẳng HK nên B đúng

Vậy A, B, C đều đúng

Chọn đáp án D

II. Bài tập tự luận

Bài 1: Cho tam giác ABC có đường phân giác AK của góc A. Biết rằng giao điểm của đường phân giác của tam giác ABK trùng với giao điểm ba đường trung trực của tam giác ABC. Tìm số đo các góc của tam giác ABC.

Đáp án
Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Gọi O là giao điểm của 3 đường phân giác của tam giác ABK

Theo đề bài, O là giao điểm của ba đường trung trực của tam giác ABC

Vậy OA = OB = OC và các tam giác AOB, AOC, BOC đều là các tam giác đều tại đỉnh O

GọiTrắc nghiệm: Tính chất ba đường trung trực của tam giác

Vì AK là đường phân giác của góc BAC nên nếu ∠KAB = 2a thì ∠BAC = 4a

Ta có: ΔAOB = ΔCOB ⇒ AB = CB

Vậy tam giác ABC cân tại đỉnh B

⇒ ∠BAC = ∠ BCA

Khi đó ta có:

2a + 4a + 4a = 180° ⇒ 10a = 180° ⇒ a = 18°

Vậy số đo cách góc của tam giác ABC là ∠A = ∠C = 72°, ∠B = 36°

Bài 2: Trên ba cạnh AB, BC và CA của tam giác đều ABC, lấy các điểm theo thứ tự M, N, P sao cho AM = BN = CP. Gọi O là giao điểm của ba đường trung trực của tam giác ABC. Chứng minh O cũng là gia điểm của ba đường trung trực của tam giác MNP.

Đáp án
Trắc nghiệm: Tính chất ba đường trung trực của tam giác

Theo giả thiết O là giao điểm của ba đường trung trực của tam giác ABC nên ta có: OA = OB = OC.

⇒ Các tam giác AOM, BON, COP có:

AM = BN = CP (gt)

Trắc nghiệm: Tính chất ba đường trung trực của tam giác(vì ABC là tam giác đều nên đường trung trực cũng là đường phân giác)

OA = OB = OC

Do đó: ΔAOM = ΔBON = ΔCOP (c-g-c)

⇒ OM = ON = OP

Hay O là giao điểm của ba đường trung trực tam giác MNP

Trên đây VnDoc đã giới thiệu tới các bạn lý thuyết môn Toán học 7: Tính chất ba đường trung trực của tam giác. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 7, Giải bài tập Toán lớp 7, Giải VBT Toán lớp 7VnDoc tổng hợp và giới thiệu tới các bạn đọc

Chia sẻ, đánh giá bài viết
14
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Chuyên đề Toán 7

    Xem thêm