Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 1 Mệnh đề và tập hợp sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn phương án thích hợp

    Cho mệnh đề P:" \exists x\mathbb{\in R},\ x^2 + 2x + 1 < 0''. Lập mệnh đề phủ định của mệnh đề P và xét tính đúng sai của mệnh đề đó.

    Mệnh đề phủ định của mệnh đề P là: \overline{P}:''\forall
x\mathbb{\in R},\ x^{2} + 2x + 1 \geq 0''.

    Mệnh đề này là mệnh đề đúng vì x^{2} + 2x
+ 1 = (x + 1)^{2} \geq 0 đúng \forall x\mathbb{\in R}

  • Câu 2: Nhận biết

    Tìm tập rỗng

    Trong các tập hợp sau, tập hợp nào rỗng?

    Xét các đáp án:

    Đáp án A = \left\{ x\mathbb{\in N}\left|
x^{2} - 4 = 0 \right.\  \right\}.

    Ta có x^{2} - 4 = 0 \Leftrightarrow \left\{
\begin{matrix}
x = 2\mathbb{\in N} \\
x = - 2\mathbb{\notin N} \\
\end{matrix} \right.\  \Rightarrow A = \left\{ 2 \right\}.

    Đáp án B = \left\{ x\mathbb{\in R}\left|
x^{2} + 2x + 3 = 0 \right.\  \right\}.

    Ta có x^{2} + 2x + 3 = 0 (phương trình vô nghiệm) \Rightarrow B =
\varnothing.

    Đáp án C = \left\{ x\mathbb{\in R}\left|
x^{2} - 5 = 0 \right.\  \right\}.

    Ta có x^{2} - 5 = 0 \Leftrightarrow x = \pm
\sqrt{5}\mathbb{\in R \Rightarrow}C = \left\{ - \sqrt{5};\sqrt{5}
\right\}.

    Đáp án D = \left\{ x\mathbb{\in Q}\left|
x^{2} + x - 12 = 0 \right.\  \right\}.

    Ta có x^{2} + x - 12 = 0 \Leftrightarrow \left\{
\begin{matrix}
x = 3\mathbb{\in Q} \\
x = - 4\mathbb{\in Q} \\
\end{matrix} \right.\  \Rightarrow D = \left\{ - 4;3
\right\}.

  • Câu 3: Thông hiểu

    Xác định kết quả sai

    Chọn kết quả sai trong các kết quả sau:

    Phương án sai là phương án A \cup B = A
\Leftrightarrow A \subset B.

    A \cup B = A \Leftrightarrow A \supset
B.

  • Câu 4: Nhận biết

    Tìm mệnh đề chứa biến.

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 5: Thông hiểu

    Tìm số tập con của tập X

    Cho tập Xn + 1 phần tử (n \in \mathbb{N}). Số tập con của X có hai phần tử là

    Lấy một phần tử của X, ghép với n phần tử còn lại được n tập con có hai phần tử. Vậy có (n + 1)n tập.

    Nhưng mỗi tập con đó được tính hai lần nên số tập con của X có hai phần tử là \frac{n(n + 1)}{2}.

  • Câu 6: Thông hiểu

    Tìm m để A giao B bằng rỗng

    Cho 2 tập khác rỗng A = (m - 1;4\rbrack;B
= ( - 2;2m + 2),m\mathbb{\in R}. Tìm m để A \cap B \neq \varnothing

    Đáp án - 1 < m < 5 đúng vì: Với 2 tập khác rỗng A, B ta có điều kiện \left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > - 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
m > - 2 \\
\end{matrix} \right.\  \Leftrightarrow - 2 < m < 5.

    Để A \cap B \neq \varnothing
\Leftrightarrow m - 1 < 2m + 2 \Leftrightarrow m > -
3.

    So với kết quả của điều kiện thì - 2 <
m < 5.

  • Câu 7: Vận dụng

    Tìm đáp án đúng

    Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?

    Ta có:

    Mệnh đề P ⇔ Q đúng khi cả hai mệnh đề P ⇒ QQ ⇒ P cùng đúng hoặc cùng sai. (Hay P ⇔ Q đúng khi cả hai mệnh đề PQ cùng đúng hoặc cùng sai).

  • Câu 8: Nhận biết

    Xác định số tập con của tập A

    Cho A = \left\{ 1\ ;\ 2\ ;\ 3
\right\}, số tập con của A

    Số tập hợp con của tập hợp A2^{3} = 8.

  • Câu 9: Thông hiểu

    Chọn phương án thích hợp

    Phủ định của mệnh đề "\exists
x\mathbb{\in Q}:2x^{2} - 5x + 2 = 0"

    Vì phủ định của mệnh đề "\exists
x\mathbb{\in Q}:2x^{2} - 5x + 2 = 0""\forall x\mathbb{\in Q}:2x^{2} - 5x + 2 \neq
0" .

  • Câu 10: Vận dụng

    Tìm hợp của hai tập hợp

    Cho A = \lbrack
- 4;7brackB = ( - \infty; -
2) \cup (3; + \infty). Khi đó, A
\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup
(3;7brack.

  • Câu 11: Thông hiểu

    Phát biểu lại mệnh đề

    Cho mệnh đề kéo theo: “ Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau”. Hãy phát biểu lại mệnh đề trên bằng cách sử dụng “ điều kiện cần” hoặc “ điều kiện đủ”.

    Phát biểu lại như sau: “Hai tam giác bằng nhau là điều kiện đủ để hai tam giác có diện tích bằng nhau”/

  • Câu 12: Thông hiểu

    Liệt kê các phần tử của tập X

    Hãy liệt kê các phần tử của tập X =\left\{ x\mathbb{\in Z}\left| x^{4} - 6x^{2} + 8 = 0
\right.\  \right\}.

    Ta có x^{4} - 6x^{2} + 8 = 0
\Leftrightarrow \left\{ \begin{matrix}
x^{2} = 4 \\
x^{2} = 2 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = \pm 2\mathbb{\in Z} \\
x = \pm \sqrt{2}\mathbb{\notin Z} \\
\end{matrix} \right. nên X =
\left\{ - 2;2 \right\}.

  • Câu 13: Nhận biết

    Tìm mệnh đề tương đương

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 14: Nhận biết

    Tìm mệnh đề phủ định mệnh đề đã cho

    Cho mệnh đề “Phương trình x^{2} - 4x + 4
= 0 có nghiệm”. Mệnh đề phủ định của mệnh đề đã cho là

    Mệnh đề phủ định “Phương trình x^{2} - 4x
+ 4 = 0 không có nghiệm” hay “Phương trình x^{2} - 4x + 4 = 0 vô nghiệm”.

  • Câu 15: Nhận biết

    Tìm mệnh đề đúng.

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 16: Vận dụng

    Chọn khẳng định sai

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 17: Vận dụng

    Chọn đáp án thích hợp

    Cho mệnh đề chứa biến P(x) = \left\{
x\mathbb{\in Z}:\left| x^{2} - 2x - 3 \right| = x^{2} + |2x + 3|
\right\}. Trong đoạn \lbrack -
2020;2021\rbrack có bao nhiêu giá trị của x để mệnh đề chứa biến P(x) là mệnh đề đúng?

    Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình \left| x^{2} - 2x -
3 \right| = x^{2} + |2x + 3|\ \ (1)

    + Nếu x \geq - \frac{3}{2} thì ta có

    (1) \Leftrightarrow \left| x^{2} - 2x -
3 \right| = x^{2} + 2x + 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x - 3 = x^{2} + 2x + 3 \\
- x^{2} + 2x + 3 = x^{2} + 2x + 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - \frac{3}{2} \\
x = 0 \\
\end{matrix} \right..

    + Nếu x < - \frac{3}{2} thì ta có (1) \Leftrightarrow \left| x^{2} - 2x
- 3 \right| = x^{2} - 2x - 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:

    (1) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 2x - 3 \geq 0 \\
x < - \frac{3}{2} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 1 \\
x \geq 3 \\
\end{matrix} \right.\  \\
x < - \frac{3}{2} \\
\end{matrix} \right.\  \Leftrightarrow x < - \frac{3}{2}

    Phương trình đã cho có tập nghiệm nguyên trên đoạn \lbrack - 2020;2021\rbrackS = \left\{ 0; - 2; - 3;...; - 2020
\right\}.

    Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.

  • Câu 18: Nhận biết

    Xác định tập hợp A hợp B

    Cho hai tập hợp A = \left\{ 1;3;5;8
\right\},\ \ B = \left\{ 3;5;7;9 \right\}. Xác định tập hợp A \cup B.

    Ta có: A \cup B = \left\{ 1;3;5;7;8;9
\right\}.

  • Câu 19: Nhận biết

    Chọn phương án đúng

    Cho tập hợp A = (2; + \infty). Khi đó, tập C_{\mathbb{R}}^{A}

    Biểu diễn trên trục số

  • Câu 20: Vận dụng

    Mệnh đề nào sau đây sai?

    Mệnh đề nào sau đây sai?

    Mệnh đề P \Leftrightarrow Q đúng khi P \Rightarrow Q đúng và Q \Rightarrow P đúng.

    ABC là tam giác đều \Rightarrow A
= 60^{0}là mệnh đề đúng. A = 60^{0}
\Rightarrow ABC là tam giác đều là mệnh đề sai

    \RightarrowABC là tam giác đều \Leftrightarrow A = 60^{0}” là mệnh đề sai.

    Chọn đáp án ABC là tam giác đều \Leftrightarrow A = 60^{0}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo