Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Đường tròn trong mặt phẳng tọa độ (Dễ)

Cùng luyện tập bài Đường tròn trong mặt phẳng tọa độ các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn đường kính AB với A(1;1),B(7;5) có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I(4;3) \\
R = IA = \sqrt{(4 - 1)^{2} + (3 - 1)^{2}} = \sqrt{13} \\
\end{matrix} ight.

    ightarrow (C):(x - 4)^{2} + (y - 3)^{2}
= 13

    \Leftrightarrow x^{2} + y^{2} - 8x - 6y
+ 12 = 0.

  • Câu 2: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y - 5 = 0, bán kính R = 2\sqrt{2} và tiếp xúc với đường thẳng \Delta:\ x - y - 1 = 0. Phương trình của đường tròn (C) là:

    Hướng dẫn:

    I \in d ightarrow I(5 - 3a;a)
ightarrow d\lbrack I;\Deltabrack = R = 2\sqrt{2} \Leftrightarrow
\frac{|4 - 4a|}{\sqrt{2}} = 2\sqrt{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = 2 \\
\end{matrix} ight.\  ightarrow \left\lbrack \begin{matrix}
I(5;0) \\
I( - 1;2) \\
\end{matrix} ight.\ .

    Vậy các phương trình đường tròn là: (x -
5)^{2} + y^{2} = 8 hoặc (x + 1)^{2}
+ (y - 2)^{2} = 8.

  • Câu 3: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng x^{2} + y^{2} - 2ax - 2by + c = 0(1) và tiếp xúc với hai trục tọa độ có phương trình là:

    Hướng dẫn:

    \begin{matrix}
I \in d ightarrow I(12 - 5a;a) ightarrow R = d\lbrack I;Oxbrack =
d\lbrack I;Oybrack = |12 - 5a| = |a| \\
ightarrow \left\lbrack \begin{matrix}
a = 3 ightarrow I( - 3;3),\ R = 3 \\
a = 2 ightarrow I(2;2),\ R = 2 \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn là :

    (x - 2)^{2} + (y - 2)^{2} = 4 hoặc (x + 3)^{2} + (y - 3)^{2} =
9.

  • Câu 4: Nhận biết
    Tìm tọa độ tâm và bán kính

    Đường tròn (C):x^{2} + y^{2} - 4x + 6y - 12 = 0 có tâm I và bán kính R lần lượt là:

    Hướng dẫn:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 6y - 12 = 0 ightarrow a = 2,\ b = - 3,\ c = -
12 ightarrow I(2; - 3). \\
R = \sqrt{4 + 9 + 12} = 5.\  \\
\end{matrix}

  • Câu 5: Nhận biết
    Tìm tọa độ tâm và bán kính

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Hướng dẫn:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 6: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm (1) thuộc đường thẳng \Delta:x = 5 và tiếp xúc với hai đường thẳng d_{1}:3x–y + 3 = 0,d_{2}:x–3y + 9 =
0 có phương trình là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}
I \in \Delta ightarrow I(5;a) ightarrow R = d\left\lbrack I;d_{1}
ightbrack = d\left\lbrack I;d_{2} ightbrack = \frac{|18 -
a|}{\sqrt{10}} = \frac{|14 - 3a|}{\sqrt{10}} \\
\Leftrightarrow \left\lbrack \begin{matrix}
a = 8 ightarrow I(5;8),\ R = \sqrt{10} \\
a = - 2 ightarrow I(5; - 2),\ R = 2\sqrt{10} \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn:

    (x - 5)^{2} + (y - 8)^{2} = 10 hoặc (x - 5)^{2} + (y + 2)^{2} =
40.

  • Câu 7: Thông hiểu
    Tính khoảng cách từ tâm đến trục hoành

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    Hướng dẫn:

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 8: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua điểm M(2;1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    Hướng dẫn:

    M(2;1) thuộc góc phần tư (I) nên A(a;a),\ \ a > 0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1;1),R = 1 ightarrow (C):(x - 1)^{2} + (y - 1)^{2}
= 1 \\
a = 5 ightarrow I(5;5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y -
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 9: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I(
- 2;3) và đi qua M(2; - 3) có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I( - 2;3) \\
R = IM = \sqrt{(2 + 2)^{2} + ( - 3 - 3)^{2}} = \sqrt{52} \\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 3)^{2}
= 52.

    Hay (C):x^{2} + y^{2} + 4x - 6y - 39 =
0.

  • Câu 10: Thông hiểu
    Tìm khoảng cách từ tâm đường tròn đến trục tung

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    Hướng dẫn:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 11: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    Hướng dẫn:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 12: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    Hướng dẫn:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 13: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    Hướng dẫn:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 14: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    Hướng dẫn:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 15: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua điểm M(2; - 1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    Hướng dẫn:

    M(2; - 1) thuộc góc phần tư (IV) nên A(a; - a),\ \ a >
0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1; - 1),R = 1 ightarrow (C):(x - 1)^{2} + (y +
1)^{2} = 1 \\
a = 5 ightarrow I(5; - 5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y +
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 16: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 2y - 2 = 0, bán kính R = 5 và tiếp xúc với đường thẳng \Delta:\ 3x - 4y - 11 = 0. Biết tâm I có hoành độ dương. Phương trình của đường tròn (C) là:

    Hướng dẫn:

    \begin{matrix}
I \in d ightarrow I(2 - 2a;a),\ \ a < 1 ightarrow d\lbrack
I;\Deltabrack = R = 5 \\
\Leftrightarrow \frac{|10a + 5|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
a = 2\ \ (l) \\
a = - 3 \\
\end{matrix} ight.\  ightarrow I(8; - 3) \\
\end{matrix}.

    Vậy phương trình đường tròn là: (x -
8)^{2} + (y + 3)^{2} = 25.

  • Câu 17: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua điểm A(1; - 2) và tiếp xúc với đường thẳng \Delta:x - y + 1 = 0 tại M(1;2). Phương trình của đường tròn (C) là:

    Hướng dẫn:

    Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với \Delta là:

    \Delta':x + y - 3 = 0 ightarrow
I(a;3 - a).

    Ta có: R^{2} = IA^{2} = IM^{2} = (a -
1)^{2} + (a - 5)^{2} = (a - 1)^{2} + (a - 1)^{2}

    \Leftrightarrow a = 3 ightarrow \left\{
\begin{matrix}
I(3;0) \\
R^{2} = 8 \\
\end{matrix} ight.\  ightarrow (C):(x - 3)^{2} + y^{2} =
8.

  • Câu 18: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn đường kính AB với A(3; -
1),B(1; - 5) có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = \frac{1}{2}AB = \frac{1}{2}\sqrt{(1 - 3)^{2} + ( - 5 + 1)^{2}} =
\sqrt{5} \\
\end{matrix} ight.

    ightarrow (C):(x - 2)^{2} + (y + 3)^{2}
= 5.

  • Câu 19: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} - 4x + 2y - 3 = 0 là:

    Hướng dẫn:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 2y - 3 = 0 ightarrow a = 2,\ b = - 1,\ c = -
3 \\
ightarrow I(2; - 1),\ R = \sqrt{4 + 1 + 3} = 2\sqrt{2}. \\
\end{matrix}

  • Câu 20: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    Hướng dẫn:

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Kết nối tri thức

Xem thêm