Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Phương trình quy về phương trình bậc hai (Dễ)

Cùng luyện tập bài Phương trình quy về phương trình bậc hai các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{4x - 1} + 4x^{2} - 6x + 1 = 0 là:

    Hướng dẫn:

    ĐKXĐ: x \geq \frac{1}{4}

    Đặt t = \sqrt{4x - 1},\ \ t \geq 0\Rightarrow x = \frac{t^{2} + 1}{4}

    Phương trình trở thành t + 4\left(\frac{t^{2} + 1}{4} ight)^{2} - 6\frac{t^{2} + 1}{4} + 1 =0

    \begin{matrix}\Leftrightarrow 4t + t^{4} + 2t^{2} + 1 - 6\left( t^{2} + 1 ight) + 4= 0 \\\Leftrightarrow t^{4} - 4t^{2} + 4t - 1 = 0 \Leftrightarrow (t -1)\left( t^{3} + t^{2} - 3t + 1 ight) = 0 \\\end{matrix}

    \Leftrightarrow (t - 1)^{2}\left( t^{2} +2t - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\\begin{matrix}t = - 1 - \sqrt{2} \\t = - 1 + \sqrt{2} \\\end{matrix} \\\end{matrix} ight. (đối chiếu ĐKXĐ loại t = - 1 - \sqrt{2} )

    Với t = 1 ta có 1 = \sqrt{4x - 1} \Leftrightarrow x =\frac{1}{2}

    Với t = - 1 + \sqrt{2} ta có - 1 + \sqrt{2} = \sqrt{4x - 1} \Leftrightarrow 4x -1 = 3 - 2\sqrt{2} \Leftrightarrow x = \frac{2 - \sqrt{2}}{2}

    Vậy phương trình có hai nghiệm x =\frac{1}{2}x = \frac{2 -\sqrt{2}}{2}.

  • Câu 2: Nhận biết
    Số nghiệm thực của phương trình là

    Số nghiệm thực của phương trình \sqrt{x - 1}.\sqrt{2x + 6} = x + 3

    Hướng dẫn:

    ĐK: x \geq 1 , \sqrt{x - 1}.\sqrt{2x + 6} = x + 3 \Leftrightarrow(x - 1)(2x + 6) = (x + 3)^{2}\Leftrightarrow (x + 3)(x - 5) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3(KTM) \\x = 5(TM) \\\end{matrix} ight..

  • Câu 3: Nhận biết
    Số nghiệm của phương trình là

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là bao nhiêu?

    Hướng dẫn:

    x = \sqrt{\sqrt{3x^{2} + 1} - 1}\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.\  \\
\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 4: Thông hiểu
    Tìm số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    Hướng dẫn:

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 5: Nhận biết
    Tổng các nghiệm của phương trình là

    Tổng các nghiệm của phương trình \sqrt{2x - 1} + x^{2} - 3x + 1 = 0 là :

    Hướng dẫn:

    Ta có \sqrt{2x - 1} + x^{2} - 3x + 1 = 0\Leftrightarrow \sqrt{2x - 1} = - x^{2} + 3x - 1

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\2x - 1 = \left( - x^{2} + 3x - 1 ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\(x - 1)^{2}(x^{2} - 4x + 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x^{2} - 4x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \pm \sqrt{2} \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 2 - \sqrt{2} \\\end{matrix} ight.

    Phương trình có nghiệm là x = 1x = 2 - \sqrt{2}.

    Vậy tổng các nghiệm của phương trình là 1+ 2 - \sqrt{2} = 3 - \sqrt{2}.

  • Câu 6: Vận dụng
    Tính số nghiệm của phương trình

    Số nghiệm của phương trình 3\sqrt{x} + 8 = 9x + \frac{1}{x} +\frac{1}{\sqrt{x}} là:

    Hướng dẫn:

    ĐKXĐ: x > 0.

    Phương trình tương đương với

    3\left( \sqrt{x} - \frac{1}{3\sqrt{x}}ight) + 8 = 9(x + \frac{1}{9x}).

    Đặt t = \sqrt{x} - \frac{1}{3\sqrt{x}}\Rightarrow t^{2} = x + \frac{1}{9x} - \frac{2}{3} \Rightarrow x +\frac{1}{9x} = t^{2} + \frac{2}{3}

    Phương trình trở thành:

    3t + 8 = 9\left( t^{2} + \frac{2}{3}ight) \Leftrightarrow 9t^{2} - 3t - 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{2}{3} \\t = - \frac{1}{3} \\\end{matrix} ight.

    Với t = \frac{2}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = \frac{2}{3}\Leftrightarrow 3x - 2\sqrt{x} - 1 = 0 \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x} = 1 \\\sqrt{x} = - \frac{1}{3} \\\end{matrix} \Leftrightarrow x = 1 ight.

    Với t = - \frac{1}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = -\frac{1}{3}

    \Leftrightarrow 3x + \sqrt{x} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}\sqrt{x} = \frac{- 1 + \sqrt{13}}{6} \\\sqrt{x} = \frac{- 1 - \sqrt{13}}{6} \\\end{matrix} \Leftrightarrow x = \frac{7 - \sqrt{13}}{18} ight.

    Vậy phương trình có nghiệm là x = 1x = \frac{7 - \sqrt{13}}{18}.

  • Câu 7: Vận dụng
    Tính số nghiệm của phương trình

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là:

    Hướng dẫn:

    x = \sqrt{\sqrt{3x^{2} + 1} -1}

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\left\lbrack \begin{matrix}x = 0 \\x = \pm 1 \\\end{matrix} ight.\  \\\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}x = 0 \\x = 1 \\\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 8: Thông hiểu
    Tính tổng các nghiệm của phương trình

    Tổng các nghiệm của phương trình \sqrt{3x^{2} - 2x + 9} + \sqrt{3x^{2} - 2x + 2} =7 là:

    Hướng dẫn:

    Đặt t = \sqrt{3x^{2} - 2x + 2}, điều kiện t ≥ 0. Khi đó \sqrt{3x^{2} - 2x + 9} = \sqrt{t^{2} +7}.

    Phương trình trở thành \sqrt{t^{2} + 7} +t = 7

    \Leftrightarrow \sqrt{t^{2} + 7} = 7 - t\Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t^{2} + 7 = t^{2} - 14t + 49 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t = 3 \\\end{matrix} ight.\  \Leftrightarrow t = 3(Thỏa mãn)

    Với t = 3 ta có \sqrt{3x^{2} - 2x + 2} = 3

    \Leftrightarrow 3x^{2} - 2x + 2 = 9\Leftrightarrow 3x^{2} - 2x - 7 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \frac{1 + \sqrt{22}}{3} \\x = \frac{1 - \sqrt{22}}{3} \\\end{matrix} ight.

    Vậy phương trình có hai nghiệm x = \frac{1\pm \sqrt{22}}{3}.

    Tổng các nghiệm của phương trình là \frac{1 + \sqrt{22}}{3} + \frac{1 - \sqrt{22}}{3} =\frac{2}{3} .

  • Câu 9: Nhận biết
    Số nghiệm nguyên dương của phương trình là

    Số nghiệm nguyên dương của phương trình \sqrt{x - 1} = x - 3

    Hướng dẫn:

    \sqrt{x - 1} = x - 3 \Leftrightarrow\left\{ \begin{matrix}x \geq 3 \\x - 1 = (x - 3)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x^{2} - 7x + 10 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\\left\lbrack \begin{matrix}x = 2 \\x = 5 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Rightarrow x = 5.

    Vậy phương trình có một nghiệm nguyên dương.

  • Câu 10: Nhận biết
    Số nghiệm của phương trình là

    Số nghiệm của phương trình \sqrt{x^{2} + 4x + 3} = x - 2 là:

    Hướng dẫn:

    \sqrt{x^{2} + 4x + 3} = x - 2\Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} + 4x + 3 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x = \frac{1}{8}\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 11: Vận dụng
    Tính tổng các nghiệm của phương trình

    Tổng các nghiệm của phương trình \frac{x^{2} + x + 1}{\sqrt{x^{2} - x + 1}} =3\sqrt{x}

    Hướng dẫn:

    ĐKXĐ: x ≥ 0

    Dễ thấy x = 0 không phải là nghiệm của phương trình

    Xét x > 0, phương trình \Leftrightarrow x^{2} + x + 1 =3\sqrt{x}.\sqrt{x^{2} - x + 1} \Leftrightarrow x + 1 + \frac{1}{x} =3\sqrt{x - 1 + \frac{1}{x}}

    Đặt t = \sqrt{x - 1 + \frac{1}{x}},\ \ t\geq 1 \Rightarrow x + \frac{1}{x} = t^{2} + 1

    Phương trình trở thành t^{2} + 2 = 3t\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 1 \\t = 2 \\\end{matrix} ight.

    Với t = 1 ta có \sqrt{x - 1 + \frac{1}{x}} = 1 \Leftrightarrowx^{2} - x + 1 = x \Leftrightarrow x = 1(thỏa mãn)

    Với t = 2 ta có \sqrt{x - 1 + \frac{1}{x}} = 2 \Leftrightarrowx^{2} - 5x + 1 = 0 \Leftrightarrow x = \frac{5 \pm\sqrt{21}}{2}(thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{5\pm \sqrt{21}}{2}x = 1.

    Tổng các nghiệm của phương trình là \frac{5 + \sqrt{21}}{2} + \frac{5 - \sqrt{21}}{2} +1 = 6.

  • Câu 12: Thông hiểu
    Tìm số nghiệm của phương trình

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    Hướng dẫn:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 13: Vận dụng
    Tính tổng các nghiệm của phương trình

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là:

    Hướng dẫn:

    \sqrt{x^{4} - 2x^{2} + 1} + x =1

    \Leftrightarrow \sqrt{x^{4} - 2x^{2} +1} = 1 - x

    \Leftrightarrow \left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là  − 1.

  • Câu 14: Thông hiểu
    Tim số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Hướng dẫn:

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 15: Vận dụng
    Tính tổng bình phương các nghiệm của phương trình

    Tính tổng bình phương các nghiệm của phương trình: \sqrt{x + 2} + \sqrt{5 - x} + \sqrt{(x+ 2)(5 - x)} = 4 là:

    Hướng dẫn:

    ĐK x ∈ [ − 2; 5] Đặt t = \sqrt{x + 2} + \sqrt{5 - x} ,t ≥ 0.

    \Rightarrow \sqrt{(x + 2)(5 - x)} =\frac{t^{2} - 7}{2}

    Phương trình trở thành t + \frac{t^{2} -7}{2} = 4 \Leftrightarrow t^{2} + 2t- 15 = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 3(TM) \\t = - 5(KTM) \\\end{matrix} ight.

    \Rightarrow - x^{2} + 3x + 10 = 9\Leftrightarrow \left\lbrack \begin{matrix}x = \frac{3 + \sqrt{13}}{2} = x_{1}(TM) \\x = \frac{3 - \sqrt{13}}{2} = x_{2}(TM) \\\end{matrix} ight.  ⇒ x12 + x22 = 11.

  • Câu 16: Vận dụng
    Tính tích các nghiệm của phương trình

    Tích các nghiệm của phương trình 3\sqrt{x + 3} = 3x^{2} + 4x - 1 là:

    Hướng dẫn:

    ĐKXĐ: x ≥  − 3

    Phương trình \Leftrightarrow - 27(x + 3) -3\sqrt{x + 3} + 3x^{2} + 31x + 80 = 0

    Đặt t = \sqrt{x + 3}, (t≥0) phương trình trở thành  − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)

    Δt = (18x+93)2 suy ra (1) \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{- 3x - 16}{9} \\t = \frac{x + 5}{3} \\\end{matrix} ight.

    \bullet \sqrt{x + 3} = \frac{- 3x -16}{9} Vô nghiệm vì với x ≥  − 3 thì \frac{- 3x - 16}{9} < 0

    \bullet \sqrt{x + 3} = \frac{x + 5}{3}\Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow x = 1 hoặc x =  − 2

    Vậy phương trình ban đầu có hai nghiệm x = 1x =  − 2, tích các nghiệm của phương trình là 1.(−2) =  − 2.

  • Câu 17: Thông hiểu
    Tìm số nghiệm của phương trình

    Phương trình \sqrt{3x + 1} + \sqrt{5 - x} = 4 có bao nhiêu nghiệm

    Hướng dẫn:

    Đkxđ: - \frac{1}{3} \leq x \leq5.

    \sqrt{3x + 1} + \sqrt{5 - x} =4

    \Leftrightarrow 2x + 6 + 2\sqrt{(3x +1)(5 - x)} = 16

    \Leftrightarrow \sqrt{(3x + 1)(5 - x)} =5 - x

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{5 - x} = 0 \\\sqrt{3x + 1} = \sqrt{5 - x} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5 \\3x + 1 = 5 - x \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5(TM) \\x = 1(TM) \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 18: Nhận biết
    Tổng các nghiệm của phương trình là

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là bao nhiêu?

    Hướng dẫn:

    \sqrt{x^{4} - 2x^{2} + 1} + x = 1\Leftrightarrow \sqrt{x^{4} - 2x^{2} + 1} = 1 - x\Leftrightarrow\left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là -
1.

  • Câu 19: Vận dụng
    Tính tổng các nghiệm của phương trình

    Tổng các nghiệm của phương trình \frac{2x^{2} + 8x + 1}{2x + 1} = 5\sqrt{x} là:

    Hướng dẫn:

    ĐK: x ≥ 0.

    Dễ thấy x = 0 không là nghiệm của phương trình.

    Xét x ≠ 0. Khi đó phương trình tương đương với

    10x\sqrt{x} + 5\sqrt{x} = 2x^{2} + 1 +8x \Leftrightarrow 5(\sqrt{x} + \frac{1}{2\sqrt{x}}) = 2(x +\frac{1}{4x}) + 4

    Đặt t = \sqrt{x} + \frac{1}{2\sqrt{x}}\geq 2\sqrt{\sqrt{x}.\frac{1}{2\sqrt{x}}} = \sqrt{2} \Rightarrow t \geq\sqrt{2}

    Suy ra x + \frac{1}{4x} = t^{2} -1. Phương trình trở thành:

    5t = 2(t2−1) + 4 ⇔ 2t2 − 5t + 2 = 0 ⇔ t = 2 (thỏa mãn) hoặc t = \frac{1}{2} (loại)
    Với t = 2 ta có x + \frac{1}{4x} = 3 \Leftrightarrow 4x^{2} - 12x +1 = 0 \Leftrightarrow x = \frac{3 \pm 2\sqrt{2}}{2} (thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{3\pm 2\sqrt{2}}{2}.

    Tổng các nghiệm của phương trình bằng 3.

  • Câu 20: Thông hiểu
    Tìm khẳng định đúng

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =3 có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq \frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3\Leftrightarrow t + t + 3 +2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}3 - t \geq 0 \\t(t + 3) = (3 - t)^{2} \\\end{matrix} ight. \left\{ \begin{matrix}t \leq 3 \\t = 1 \\\end{matrix} ight.  ⇔ t = 1(thỏa mãn)

     ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}x = 1 = x_{1} \\x = 2 = x_{2} \\\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Kết nối tri thức

Xem thêm