Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Hàm số (Dễ)

Hãy cùng Luyện tập bài Hàm số các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn khẳng định đúng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5) = (x12x22) − 4(x1x2) = (x1x2)(x1+x2−4).

    ● Với mọi x1x2 ∈ (−∞;2)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < 2 \\
x_{2} < 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} < 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 < 0.

    Vậy hàm số nghịch biến trên (−∞;2).

    ● Với mọi x1x2 ∈ (2;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 2 \\
x_{2} > 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} > 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 > 0.

    Vậy hàm số đồng biến trên (2;+∞).

  • Câu 2: Nhận biết
    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 3: Vận dụng
    Chọn khẳng định đúng

    Cho hàm số f(x) =
\sqrt{2x - 7}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    TXĐ : D = \left\lbrack \frac{7}{2}; +
\infty ight) nên ta loại đáp án C và D.

    Xét f\left( x_{1} ight) - f\left( x_{2}
ight) = \sqrt{2x_{1} - 7} - \sqrt{2x_{2} - 7} = \frac{2\left( x_{1} -
x_{2} ight)}{\sqrt{2x_{1} - 7} + \sqrt{2x_{2} - 7}}.

    Với mọi x_{1},\ x_{2} \in \left(
\frac{7}{2}; + \infty ight)x1 < x2, ta có \frac{f\left( x_{1} ight) - f\left(
x_{2} ight)}{x_{1} - x_{2}} = \frac{2}{\sqrt{2x_{1} - 7} +
\sqrt{2x_{2} - 7}} > 0.

    Vậy hàm số đồng biến trên \left(
\frac{7}{2}; + \infty ight).

  • Câu 4: Vận dụng
    Tìm m để hàm số xác định

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    Gợi ý:

    Hàm số y = \frac{A(x)}{B(x)} Điều kiện: B(x) ≠ 0.

    Hàm số y = \sqrt[{2k}]{A(x)}\ \left(
k\mathbb{\in N}* ight) \Rightarrow Điều kiện: A(x) ≥ 0.

    Hàm số y = \frac{A(x)}{\sqrt[{2k}]{B(x)}}\
\left( k\mathbb{\in N}* ight) \Rightarrow Điều kiện: B(x) ≥ 0.

    Hướng dẫn:

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m \in \lbrack - 4;0brack \cup
\left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 5: Vận dụng
    Tìm hàm số thỏa mãn đồ thị

    Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đi qua các điểm (0;1)(1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.

    Chọn y = 1 − |x|.

  • Câu 6: Vận dụng
    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = x + \frac{1}{x} trên khoảng (1;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( x_{1} + \frac{1}{x_{1}} ight) - \left( x_{2} +
\frac{1}{x_{2}} ight) = \left( x_{1} - x_{2} ight) + \left(
\frac{1}{x_{1}} - \frac{1}{x_{2}} ight) = \left( x_{1} - x_{2}
ight)\left( 1 - \frac{1}{x_{1}x_{2}} ight).

    Với mọi x1x2 ∈ (1;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 1 \\
x_{2} > 1 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x_{1} > 1 \Rightarrow
\frac{1}{x_{1}.x_{1}} < 1.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = 1 - \frac{1}{x_{1}x_{2}} >
0\overset{}{ightarrow}f(x) đồng biến trên (1;+∞).

  • Câu 7: Thông hiểu
    Tìm hoành độ của điểm

    Cho hàm số y =
\left\{ \begin{matrix}
- 2x + 1 & khi & x \leq - 3 \\
\frac{x + 7}{2} & khi & x > - 3 \\
\end{matrix} ight.. Biết f(x0) = 5 thì x0

    Gợi ý:

    Thay giá trị tung độ 5 vào công thức hàm số để tìm ra hoành độ.

    Hướng dẫn:

    TH1. x0 ≤  − 3: Với f(x0) = 5 ⇔  − 2x0 + 1 = 5 ⇔ x0 =  − 2 (Loại).

    TH2. x0 >  − 3: Với f\left( x_{0} ight) = 5 \Leftrightarrow
\frac{x_{0} + 7}{2} = 5 \Leftrightarrow x_{0} = 3 (thỏa mãn).

  • Câu 8: Nhận biết
    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hướng dẫn:

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 9: Nhận biết
    Tìm hàm số nghịch biến

    Trong các hàm số sau, hàm số nào nghịch biến trên ?

    Hướng dẫn:

    Hàm số y = ax + b với a ≠ 0 nghịch biến trên khi và chỉ khi a < 0.

  • Câu 10: Nhận biết
    Chọn khẳng định sai

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 11: Nhận biết
    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hướng dẫn:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 12: Vận dụng
    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có f\left( x_{1} ight) - f\left(
x_{2} ight) = \frac{3}{x_{1}} - \frac{3}{x_{2}} = \frac{3\left( x_{2}
- x_{1} ight)}{x_{1}x_{2}} = - \frac{3\left( x_{1} - x_{2}
ight)}{x_{1}x_{2}}.

    Với mọi x1x2 ∈ (0;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} > 0 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x > 0.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = - \frac{3}{x_{1}x_{2}} <
0\overset{}{ightarrow}f(x) nghịch biến trên (0;+∞).

  • Câu 13: Nhận biết
    Tìm điểm thuộc đồ thị

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Hướng dẫn:

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 14: Thông hiểu
    Tính giá trị hàm số tại điểm

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.. Ta có kết quả nào sau đây đúng?

    Hướng dẫn:

    f( - 1) = \frac{\sqrt[3]{2 - 3}}{- 1 - 2}
= \frac{1}{3}; f(2) = \frac{2.2 +
3}{2 + 1} = \frac{7}{3}.

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm

    Cho hàm số y =
\frac{x + 1}{x - 1}. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.

    Gợi ý:

    Thay giá trị tung độ  − 2 vào công thức hàm số để tìm ra hoành độ.

    Hướng dẫn:

    Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng  − 2.

    Khi đó: \frac{x_{0} + 1}{x_{0} - 1} = - 2
\Leftrightarrow x_{0} + 1 = 2\left( 1 - x_{0} ight) \Leftrightarrow
3x_{0} = 1 \Leftrightarrow x_{0} = \frac{1}{3} \Rightarrow M\left(
\frac{1}{3}; - 2 ight).

  • Câu 16: Nhận biết
    Chọn khẳng định sai

    Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.

    Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải

    \overset{}{ightarrow} Hàm số không đổi trên khoảng (0;2).

    Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;3).

    Chọn đáp án Hàm số đồng biến trên khoảng (2;3).

  • Câu 17: Vận dụng
    Chọn khẳng định đúng

    Hàm số f(x) có tập xác định và có đồ thị như hình vẽ

     

    Mệnh đề nào sau đây đúng ?

    Hướng dẫn:

    Nhìn vào đồ thị hàm số ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm M(1; 0), N(3; 0) ⇒ MN = 2 . Suy ra Đồ thị hàm số cắt trục hoành theo một dây cung có độ dài bằng 2là đúng.

  • Câu 18: Vận dụng
    Chọn khẳng định đúng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = \frac{x - 3}{x + 5} trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( \frac{x_{1} - 3}{x_{1} + 5} ight) - \left(
\frac{x_{2} - 3}{x_{2} + 5} ight) = \frac{\left( x_{1} - 3
ight)\left( x_{2} + 5 ight) - \left( x_{2} - 3 ight)\left( x_{1} +
5 ight)}{\left( x_{1} + 5 ight)\left( x_{2} + 5 ight)} =
\frac{8\left( x_{1} - x_{2} ight)}{\left( x_{1} + 5 ight)\left(
x_{2} + 5 ight)}.

    ● Với mọi x1x2 ∈ (−∞;−5)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < - 5 \\
x_{2} < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 < 0 \\
x_{2} + 5 < 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−∞;−5).

    ● Với mọi x1x2 ∈ (−5;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > - 5 \\
x_{2} > - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 > 0 \\
x_{2} + 5 > 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−5;+∞).

    Chọn Hàm số đồng biến trên các khoảng (−∞;−5)(−5;+∞).

  • Câu 19: Nhận biết
    Tìm hàm số đồng biến

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    Hướng dẫn:

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 20: Thông hiểu
    Tính giá trị hàm số tại điểm

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Gợi ý:

    Tính giá trị hàm số tại điểm có hoành độ 2 − 2 rồi cộng lại.

    Hướng dẫn:

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Kết nối tri thức

Xem thêm