Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Đại số 10 Chương 2 Kết nối tri thức

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 2 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm bất phương trình thỏa mãn

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 2: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình \left( 1 + \sqrt{3} ight)x - \left( 1 - \sqrt{3}
ight)y \geq 2 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \  - 1). Vì \left( 1 + \sqrt{3} ight).1 - \left( 1 -
\sqrt{3} ight).( - 1) = 2 \geq 2 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \  -
1).

  • Câu 3: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 4: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 5: Nhận biết

    Tìm điểm thỏa mãn

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 6: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 7: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
3x + y - 2 \geq 0 \\
x + 3y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
3.0 + 1 - 2 \geq 0 \\
0 + 3.1 + 1 \leq 0 \\
\end{matrix} ight.. Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
3.1 - 1 - 2 \geq 0 \\
1 + 3. - 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 8: Nhận biết

    Chọn hệ bất phương trình thỏa mãn

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 9: Vận dụng

    M thuộc miền nghiệm của bất phương trình nào

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y\leq 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) \leqslant 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 \leqslant 3} \\   { - 15 \leqslant 8} \end{array}\left( {TM} ight)} ight.

    Vậy điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y> 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) > 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y<- 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) <  - 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 <  - 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y\leq -3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) \leqslant  - 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 \leqslant  - 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

  • Câu 10: Vận dụng cao

    Điền đáp án vào ô trống

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Đáp án là:

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: x,y (ha)

    Điều kiện: x,y \geq 0

    Số tiền cần bỏ ra để thuê người trồng hoa là 30y.100000 = 3000000y (trồng).

    Lợi nhuận thu được là

    f(x;y) = 1000000x + 12000000 -
3000000y

    \Rightarrow f(x;y) = 10000000x +
9000000y (đồng).

    Vì số công trồng rau không vượt quá 80 nên 20x
\leq 80 \Leftrightarrow x \leq 4

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 10 \\
0 \leq x \leq 4 \\
y \geq 0 \\
\end{matrix} ight.\ (*)

    Ta cần tìm giá trị lớn nhất của f(x;y) trên miền nghiệm của hệ (*).

    Miền nghiệm của hệ (*) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là toạ độ của một trong các đỉnh O(0;0),A(4;0),B(4;6),C(0;10).

    => f(x;y) lớn nhất khi (x;y) = (4;6)

    Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất

  • Câu 11: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn: \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight..

    Để hệ bất phương trình \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight. trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước x^2,y^2 phải bằng 0 nghĩa là:

    m=0

    Vậy với m=0 thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.

  • Câu 12: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 13: Nhận biết

    Tìm điểm thuộc miền nghiệm của hệ

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 14: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 15: Thông hiểu

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 3x - 5y > 11 không chứa điểm nào sau đây?

    Xét điểm (1; - 3). Ta có: - 3.1 - 5.3 = - 18 > 11 không thỏa mãn. Do đó (1;3) không thuộc miền nghiệm của bất phương trình - 3x - 5y >
11.

  • Câu 16: Thông hiểu

    Tìm điểm thỏa mãn

    Cho bất phương trình 2x + 4y < 5 có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: 2.1 + 4.( - 1) = - 2 <
5. Ta thấy (1; - 1) thỏa mãn phương trình do đó (1; - 1) là một cặp nghiệm của phương trình.

  • Câu 17: Thông hiểu

    Tìm tọa độ điểm không thuộc miền nghiệm của bất phương trình

    Miền nghiệm của bất phương trình x+2(y+1)-4y\leq 2(x+1)-5y không chứa điểm có tọa độ:

    Ta có: 

    x+2(y+1)-4y\leq 2(x+1)-5y

    \begin{matrix}   \Rightarrow x + 2y + 2 - 4y \leqslant 2x + 2 - 5y \hfill \\   \Rightarrow  - x + 3y \leqslant 0 \hfill \\ \end{matrix}

    Thay x=3;y=2 vào bất phương trình ta được: - 3 + 3.2=  5 > 0

    Vậy (3;2) không thuộc miền nghiệm của bất phương trình.

  • Câu 18: Nhận biết

    Tìm bất phương trình tương đương

    Bất phương trình 3x – 2(y – x + 1) > 0 tương đương với bất phương trình nào sau đây?

    Ta có: 3x – 2(y – x + 1) > 0 \Leftrightarrow 5x-2y-2>0.

  • Câu 19: Thông hiểu

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 20: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 21: Vận dụng

    Tìm bất phương trình thỏa mãn

    Phần không bị gạch chéo là nghiệm của bất phương trình nào? (kể cả bờ \Delta)

    Đường thẳng \Delta có dạng y = ax + b đi qua hai điểm (1;0)(0,
- \frac{1}{2}).

    Thay tọa độ hai điểm này vào \Delta: \left\{ \begin{matrix}
0 = a.1 + b \\
- \frac{1}{2} = a.0 + b \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
a = \frac{1}{2} \\
b = - \frac{1}{2} \\
\end{matrix} ight.\  ight..

    Vậy \Delta có dạng y = \frac{1}{2}x - \frac{1}{2} \Leftrightarrow x -
2y - 1 = 0.

    Thay điểm O(0;0) vào \Delta : 0 -
0 - 1 < 0. Suy ra phần không bị gạch (không chứa O) là nghiệm của bất phương trình x - 2y - 1 \geq 0. (kể cả bờ \Delta)

  • Câu 22: Nhận biết

    Xác định bất phương trình bậc nhất hai ẩn

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 23: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + 3y - 2 \geq 0 \\
2x + y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
0 + 3.1 - 2 \geq 0 \\
2.0 + 1 + 1 \leq 0 \\
\end{matrix} ight..Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
- 1 + 3.1 - 2 \geq 0 \\
2.( - 1) + 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng.

  • Câu 24: Thông hiểu

    Tìm bất phương trình thỏa mãn

    Điểm A( -
1;3) là điểm thuộc miền nghiệm của bất phương trình:

    - 3.( - 1) + 2.3 - 4 > 0 là mệnh đề đúng nên A( - 1;3) là điểm thuộc miền nghiệm của bất phương trình - 3x + 2y - 4 > 0.

  • Câu 25: Nhận biết

    Cặp số (2; 3) không là nghiệm của bất phương trình nào

    Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

    Xét đáp án x + y < 0 

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0 

    Vậy cặp số (2; 3) không là nghiệm của bất phương trình.

    Xét đáp án x + y > 0

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án x - y < 0

    Thay x=2;y=3 ta được: 2 - 3 = -1 < 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án 2x - y > 0

    Thay x=2;y=3 ta được: 2.2 - 3 = 1 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

  • Câu 26: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Cho bất phương trình \sqrt{5}x - 1 < \sqrt{2023}y có tập nghiệm T. Khẳng định nào sau đây là đúng?

    Xét điểm (2;1). Ta có: \sqrt{5}.2 - 1 < \sqrt{2023}.1 thỏa mãn. Do đó (2;1) \in T.

  • Câu 27: Nhận biết

    Tìm cặp số không là nghiệm của hệ

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 28: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 29: Nhận biết

    Tìm cặp số không phải là nghiệm của bất phương trình

    Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình 2x + y < 1?

     Thay (0; 1) vào bất phương trình, ta được: 1 < 1 (sai). Do đó cặp số này không là nghiệm của bất phương trình.

  • Câu 30: Vận dụng

    Tìm bất phương trình thỏa mãn

    Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?

    Đường thẳng đi qua hai điểm A\left(
\frac{3}{2};0 ight)B(0; -
3) nên có phương trình 2x - y =
3.

    Mặt khác, cặp số (0;0) không thỏa mãn bất phương trình 2x - y >
3 nên phần tô đậm ở hình trên biểu diễn miền nghiệm của bất phương trình 2x - y > 3.

  • Câu 31: Thông hiểu

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
5x - 2y - 1 > 0 \\
2x + 2y + 5 > 0 \\
x + y + 1 < 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
5.0 - 2.0 - 1 > 0 \\
2.0 + 2.0 + 5 > 0 \\
0 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{
\begin{matrix}
5.1 - 2.0 - 1 > 0 \\
2.1 + 2.0 + 5 > 0 \\
1 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 2) \Rightarrow \left\{
\begin{matrix}
5.0 - 2. - 2 - 1 > 0 \\
2.0 + 2. - 2 + 5 > 0 \\
0 - 2 + 1 < 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 32: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 33: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình 2x + y > 1 không chứa điểm nào sau đây?

    Xét điểm D( - 1\ \ ;\ \  - 1). Vì 2.( - 1) - 1 = - 3 < 1 nên miền nghiệm của bất phương trình đã cho không chứa điểm D( - 1\ \ ;\ \  - 1).

  • Câu 34: Nhận biết

    Điểm nào không thuộc miền nghiệm

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 35: Nhận biết

    Điền vào chỗ trống

    Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x_0; y_0) sao cho ax_0 + by_0 + c < 0 được gọi là ……của bất phương trình ax + by + c < 0”.

    Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x_0; y_0) sao cho ax_0 + by_0 + c < 0 được gọi là miền nghiệm của bất phương trình ax + by + c < 0.

  • Câu 36: Thông hiểu

    Cặp số nào là nghiệm của bất phương trình

    Cặp số nào sau đây là nghiệm của bất phương trình 3x - 5y > 12?

    Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:

    3.0 - 5.3 =  - 15 < 12

    Vậy (0;3) không là cặp nghiệm của bất phương trình

    Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:

    3.6- 5.1=13> 12

    Vậy (6; 1) là cặp nghiệm của bất phương trình.

    Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:

    3.2 - 5.4 =  - 14 < 12

    Vậy (2; 4) không là cặp nghiệm của bất phương trình.

    Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:

    3.3 - 5.2 =  - 1 < 12

    Vậy (3; 2) không là cặp nghiệm của bất phương trình.

  • Câu 37: Nhận biết

    Tìm điểm không thuộc miền nghiệm của hệ

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight.?

     Thay tọa độ (0;0) vào hệ \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight. ta được \left\{\begin{matrix}-1>0\\ 4<0\end{matrix}ight. không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.

  • Câu 38: Nhận biết

    Tìm điểm thuộc miền nghiệm hệ bất phương trình

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 39: Vận dụng cao

    Tìm điều kiện của a và b

    Cho đường thẳng (d):y = \left( a^{2} - 2 ight)x + a + b và bất phương trình x + y - 3 <
0. Tìm điều kiện của ab để mọi điểm thuộc (d) đều là nghiệm của bất phương trình đã cho.

    Để mọi điểm thuộc đường thẳng  (d)  đều là nghiệm của bất phương trình thì điều kiện cần là  (d):y = \left( a^{2} - 2 ight)x + a + b  phải song song với \left( {d'} ight):y =  - x + 3. Khi đó ta có:

    \left\{ \begin{matrix}
a^{2} - 2 = - 1 \\
a + b eq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = - 1 \\
b eq 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight. ta được (d):y = - x + b + 1

    Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng (d) là đồ thị của đường thẳng d' khi d' tịnh tiến xuống dưới theo trục Oy.

    Nghĩa là b + 1 < 3 \Rightarrow b <
2.

  • Câu 40: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Đại số 10 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo