Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm mệnh đề phủ định

    Cho mệnh đề "\exists x\mathbb{\in
Z},\ 4x^{2} - 1 = 0". Mệnh đề phủ định của mệnh đề trên là

    Mệnh đề "\exists x\mathbb{\in Z},\
4x^{2} - 1 = 0" có phủ định lại là "\forall x\mathbb{\in Z},\ 4x^{2} - 1 \neq
0".

  • Câu 2: Thông hiểu

    Tính giá trị của biểu thức

    Cho biết \sin\alpha + \cos\alpha =
a. Giá trị của \sin\alpha.cos\alpha bằng bao nhiêu?

    Ta có:

    a^{2} = \left( \sin\alpha + \cos\alpha
\right)^{2} = 1 + 2sin\alpha\cos\alpha

    \Rightarrow \sin\alpha\cos\alpha =
\frac{a^{2} - 1}{2}.

  • Câu 3: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Cho bất phương trình \sqrt{5}x - 1 < \sqrt{2023}y có tập nghiệm T. Khẳng định nào sau đây là đúng?

    Xét điểm (2;1). Ta có: \sqrt{5}.2 - 1 < \sqrt{2023}.1 thỏa mãn. Do đó (2;1) \in T.

  • Câu 4: Vận dụng

    Tìm tứ phân vị

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm tứ phân vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị M_{e} = 3 = Q_{2}.

    Trung vị của 17 giá trị bên trái Q_{2} là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra Q_{1} = 2.

    Trung vị của 17 giá trị bên phải Q_{2} là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra Q_{3} = 4.

  • Câu 5: Vận dụng cao

    Tính giá trị biểu thức

    Tính giá trị biểu thức P = \left\lbrack \tan\frac{17\pi}{4} + \tan\left(
\frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}.

    Ta có:

    \tan\frac{17\pi}{4} = \tan\left(
\frac{\pi}{4} + 4\pi ight) = \tan\frac{\pi}{4} = 1

    \tan\left( \frac{7\pi}{2} - x ight) =
\cot x

    \cot\frac{13\pi}{4} = \cot\left(
\frac{\pi}{4} + 3\pi ight) = \cot\frac{\pi}{4} = 1

    \cot(7\pi - x) = - \cot x

    Khi đó:

    P = \left\lbrack \tan\frac{17\pi}{4} +
\tan\left( \frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}

    P = \left( 1 + \cot x ight)^{2} +
\left( 1 - \cot x ight)^{2}

    P = 2 + 2\cot^{2}x =\dfrac{2}{\sin^{2}x}

  • Câu 6: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 7: Nhận biết

    Tính độ dài vectơ

    Cho hình vuông ABCDcó cạnh bằng a. Khi đó \left| \overrightarrow{AB} + \overrightarrow{AD}
\right| bằng:

    Ta có: \left| \overrightarrow{AB} +
\overrightarrow{AD} \right| = \left| \overrightarrow{AC} \right| = AC =
a\sqrt{2} 

  • Câu 8: Thông hiểu

    Xác định đẳng thức đúng

    Cho tam giác ABCI,\ D lần lượt là trung điểm AB,\ CI, điểm N thuộc cạnh BC sao cho BN
= 2NC. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi K là trung điểm BN.

    Xét \Delta CKI ta có

    \left\{ \begin{matrix}
DN//IK \\
DN = \frac{1}{2}IK
\end{matrix} \right.\ \ \ \  \Rightarrow \ \ \overrightarrow{DN} =
\frac{1}{2}\overrightarrow{IK} (1)

    Xét \Delta ABN ta có

    \left\{ \begin{matrix}
AN//IK \\
AN = \frac{1}{2}IK
\end{matrix} \right.\ \ \ \  \Rightarrow \ \ \overrightarrow{AN} =
2\overrightarrow{IK} (2)

    Từ (1) và (2) suy ra \
\overrightarrow{AN} = 2\overrightarrow{IK} = 2.2\ \ \overrightarrow{DN}
= 4\ \ \overrightarrow{DN}.

  • Câu 9: Thông hiểu

    Chọn kết quả chính xác

    Tìm phương sai của mẫu số liệu: 8;\ 6;\ 7;\ 5;\ 9?

    Ta có: N = 5

    Số trung bình là:

    \overline{x} = \frac{8 + 6 + 7 + 5 +
9}{5} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(8 - 7)^{2} + (6 - 7)^{2}
+ (7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Vậy đáp án là 2.

  • Câu 10: Thông hiểu

    Tính độ dài vectơ

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 11: Vận dụng

    Chọn kết luận đúng.

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 12: Nhận biết

    Chọn kết luận đúng

    Khẳng định nào sau đây là đúng?

     Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.

  • Câu 13: Thông hiểu

    Tìm điều kiện để hai vectơ cùng phương

    Cho \overrightarrow{a} =
(2016\sqrt{2015};0),\ \overrightarrow{b} = (4;x). Hai vectơ \overrightarrow{a},\overrightarrow{b} cùng phương nếu

    Ta có: \overrightarrow{a},\overrightarrow{b} cùng phương \Leftrightarrow
\overrightarrow{a} = k.\overrightarrow{b} \Rightarrow x =
0.

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Xác định đẳng thức đúng

    Cho ba điểm phân biệt A,\ \ B,\ \
C. Đẳng thức nào sau đây đúng?

    Xét các đáp án:

    Đáp án \overrightarrow{CA} -
\overrightarrow{BA} = \overrightarrow{BC}.. Ta có \overrightarrow{CA} - \overrightarrow{BA} =
\overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB} = -
\overrightarrow{BC}. Vậy \overrightarrow{CA} - \overrightarrow{BA} =
\overrightarrow{BC}. sai.

    Đáp án \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{BC}.. Ta có \overrightarrow{AB} + \overrightarrow{AC} =
\overrightarrow{AD} \neq \overrightarrow{BC} (với D là điểm thỏa mãn ABDC là hình bình hành). Vậy \overrightarrow{AB} + \overrightarrow{AC} =
\overrightarrow{BC}. sai.

    Đáp án \overrightarrow{AB} +
\overrightarrow{CA} = \overrightarrow{CB}.. Ta có \overrightarrow{AB} + \overrightarrow{CA} =
\overrightarrow{CA} + \overrightarrow{AB} =
\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =
\overrightarrow{CB}. đúng.

  • Câu 16: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 17: Vận dụng

    Xác định giao của hai tập hợp

    Cho A = \left\{ \left. \ x\mathbb{\in N}\right|\left( 2x - x^{2} \right)\left( 2x^{2} - 3x - 2 \right) = 0\right\};B = \left\{ \left. \ n \in \mathbb{N}^{*} \right|3 < n^{2}< 30 \right\}. Khi đó tập hợp A
\cap B bằng:

    Ta có:

    A = \left\{ \left. \ x\mathbb{\in N}\right|\left( 2x - x^{2} \right)\left( 2x^{2} - 3x - 2 \right) = 0\right\}

    \Leftrightarrow A = \left\{ 0;\ 2 \right\}

    B = \left\{ \left. \ n \in\mathbb{N}^{*} \right|3 < n^{2} < 30 \right\}

    \Leftrightarrow B =\left\{ 1;\ 2;\ 3;\ 4;5\  \right\} \Rightarrow A \cap B = \left\{ 2\right\}.

  • Câu 18: Nhận biết

    Điểm nào không thuộc miền nghiệm

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 19: Thông hiểu

    Tính số đo góc A

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Xác định tọa độ vectơ

    Trong mặt phẳng tọa độ Oxy cho A(5;2),B(10;8). Tọa độ của vec tơ \overrightarrow{AB} là:

    Ta có: \overrightarrow{AB} = (10 - 5;8 -
2) = (5;6).

  • Câu 21: Thông hiểu

    Tìm mệnh đề sai

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 22: Nhận biết

    Tìm mốt của mẫu số liệu

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

  • Câu 23: Thông hiểu

    Đơn giản biểu thức A

    Rút gọn biểu thức sau A = \left( \tan x +
\cot x \right)^{2} - \left( \tan x - \cot x \right)^{2}

    Ta có:

    A = \left( \tan x + \cot x \right)^{2} -
\left( \tan x - \cot x \right)^{2}

    A = \left( \tan^{2}x + 2\tan x.\cot x +\cot^{2}x \right) - \left( \tan^{2}x - 2\tan x.\cot x + \cot^{2}x \right) =4.

  • Câu 24: Thông hiểu

    Tính điểm kiểm tra trung bình

    Cho bảng thống kê điểm kiểm tra môn Hóa học của học sinh lớp 10C như sau:

    Điểm

    4

    5

    6

    7

    8

    Số học sinh

    2

    8

    7

    10

    8

    Tính điểm kiểm tra trung bình của học sinh lớp 10C?

    Số học sinh lớp 10C bằng: 35 (học sinh)

    Điểm kiểm tra trung bình của học sinh lớp 10C là:

    \overline{x} = \frac{4.2 + 5.8 + 6.7 +
7.10 + 8.8}{35} = 6,4

    Vậy điểm kiểm tra trung bình của 35 học sinh lớp 10C bằng 6,4.

  • Câu 25: Vận dụng cao

    Điền đáp án đúng vào ô trống

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Đáp án là:

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là xy (ha)

    Điều kiện: x,y \geq 0

    Lợi nhuận thu được là f(x;y) = 3000000x +
4000000y (đồng).

    Tổng số công dùng để trồng x ha cà phê và y ha sầu riêng là 20x + 30y.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x,y \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x,y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*)

    Miền nghiệm của hệ bất phương trình (*) là tứ giác OABC (kể cả biên)

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là tọa độ của một trong các đỉnh O(0;0),A(8;0),B(6;2),C(0;6).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(8;0) = 24000000 \\
f(6;2) = 26000000 \\
f(0;6) = 2400000 \\
\end{matrix} ight..

    Suy ra f(x;y) lớn nhất khi (x;y) = (6;2)

    Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.

  • Câu 26: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 27: Thông hiểu

    Chọn kết luận đúng

    Chọn đáp án sai: Một tam giác giải được nếu biết:

    Ta có: Một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2).

  • Câu 28: Vận dụng

    Khẳng định nào sau đây đúng?

    Trong hệ tọa độ Oxy, cho hình bình hành OABC, điểm C thuộc trục hoành. Khẳng định nào sau đây đúng?

    Từ giả thiết suy ra cạnh OC thuộc trục hoành \overset{}{ightarrow} cạnh AB song song với trục hoành nên y_{A} =
y_{B}\overset{}{ightarrow}\overrightarrow{AB} = \left( x_{A} - x_{B};0
ight). Do đó loại đáp án \overrightarrow{AB} có tung độ khác 0 và đáp án hai điểm A,\ B có tung độ khác nhau.

    Nếu C có hoành độ bằng 0\overset{}{ightarrow}C(0;0) \equiv O: mâu thuẩn với giả thiết OABC là hình bình hành. Loại đáp án C có hoành độ bằng 0.

    Dùng phương pháp loại trừ, ta chọn x_{A}
+ x_{C} - x_{B} = 0.

    Cách 2. Gọi I là tâm của hình bình hành OABC. Suy ra

    \bullet I là trung điểm AC\overset{}{ightarrow}I\left( \frac{x_{A} +
x_{C}}{2};\frac{y_{A} + 0}{2} ight).

    \bullet I là trung điểm OB\overset{}{ightarrow}I\left( \frac{0 +
x_{B}}{2};\frac{0 + y_{B}}{2} ight).

    Từ đó suy ra \frac{x_{A} + x_{C}}{2} =\frac{0 + x_{B}}{2}\overset{}{ightarrow}x_{A} + x_{C} - x_{B} =0.

  • Câu 29: Nhận biết

    Tìm vectơ

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Chọn đáp án đúng

    Ký hiệu khoa học của số -
0,000567 là:

    + Mỗi số thập phân đều viết được dưới dạng \alpha.10^{n} trong đó 1 \leq \alpha < 10,n \in Z.

    Dạng như thế được gọi là kí hiệu khoa học của số đó.

    + Dựa vào quy ước trên ta thấy chỉ có phương án - 567.10^{- 6} là đúng.

  • Câu 31: Nhận biết

    Tìm A hợp B

    Cho hai tập hợp A = \left\{ - 7;0;5;7
\right\},B = \left\{ - 3;5;7;8 \right\} khi đó tập A \cup B

    Ta tìm tất cả các phần tử của cả hai tập hợp.

    Thu được kết quả A \cup B = \left\{ - 7; - 3;0;5;7;8
\right\}.

  • Câu 32: Vận dụng cao

    Tính diện tích tam giác ABC

    Tam giác ABC có độ dài ba trung tuyến lần lượt là 9;\ 12;\ 15. Diện tích của tam giác ABC bằng:

    Ta có:

    \left\{ \begin{matrix}m_{a}^{2} = \dfrac{b^{2} + c^{2}}{2} - \dfrac{a^{2}}{4} = 81 \\m_{b}^{2} = \dfrac{a^{2} + c^{2}}{2} - \dfrac{b^{2}}{4} = 144 \\m_{c}^{2} = \dfrac{a^{2} + b^{2}}{2} - \dfrac{c^{2}}{4} = 225\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 292 \\
b^{2} = 208 \\
c^{2} = 100
\end{matrix} \right. \Rightarrow
\left\{ \begin{matrix}
a = 2\sqrt{73} \\
b = 4\sqrt{13} \\
c = 10
\end{matrix} \right.

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{208 + 100 - 292}{2.4\sqrt{13}.10} =
\frac{1}{5\sqrt{13}}

    \sin A = \sqrt{1 - \cos^{2}A} = \sqrt{1 -\left( \frac{1}{5\sqrt{13}} \right)^{2}} =\frac{18\sqrt{13}}{65}.

    Diện tích tam giác \Delta
ABC:

    S_{\Delta ABC} = \frac{1}{2}bc\sin A =
\frac{1}{2}.4\sqrt{13}.10.\frac{18\sqrt{13}}{65} = 72

  • Câu 33: Vận dụng

    Tìm tập hợp vị trí điểm M

    Cho tam giác ABC. Tập hợp tất cả các điểm M thỏa mãn đẳng thức \left| \overrightarrow{MB} - \overrightarrow{MC}
ight| = \left| \overrightarrow{BM} - \overrightarrow{BA}
ight|

    Ta có \left| \overrightarrow{MB} -
\overrightarrow{MC} ight| = \left| \overrightarrow{BM} -
\overrightarrow{BA} ight| \Leftrightarrow \left| \overrightarrow{CB}
ight| = \left| \overrightarrow{AM} ight| \Rightarrow AM =
BC

    A,\ \ B,\ \ C cố định \Rightarrow Tập hợp điểm M là đường tròn tâm A, bán kính BC.

  • Câu 34: Vận dụng

    Tính diện tích tam giác

    Tam giác ABCBC = a,\ CA = b,\ AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:

    Diện tích tam giác ABC ban đầu là:

    S = \frac{1}{2}.AC.BC.sin\widehat{ACB} =\frac{1}{2}.ab.\sin\widehat{ACB}.

    Khi tăng cạnh BC lên 2 lần và cạnh AC lên 3 lần thì diện tích tam giác ABC lúc này là

    S_{\Delta ABC} =\frac{1}{2}.(3AC).(2BC).\sin\widehat{ACB}

    = 6.\frac{1}{2}.AC.BC.\sin\widehat{ACB} =6S

  • Câu 35: Vận dụng

    Khẳng định nào sau đây là đúng?

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
1;1),B(1;3)C(1; - 1). Khẳng định nào sau đây là đúng?

    \overrightarrow{AB}\mathbf{=}(2;2)\Rightarrow\left|\overrightarrow{{AB}}ight|\mathbf{=}{2}\sqrt{{2}}.

    \overrightarrow{AC}=(2;-2)\Rightarrow\left|\overrightarrow {AC}ight|\mathbf{=}2\sqrt{{2}}.

    Ta có: AB = AC\Rightarrow \Delta{ABC} cân tại A.

    \overrightarrow{BC}=(0;-4)\Rightarrow\left|\overrightarrow{BC}ight|={4}.

    BC^2=AB^2+AC^2 =8+8=4^2 \Rightarrow \Delta ABC vuông tại A.

    Vậy \Delta ABC vuông cân tại A.

  • Câu 36: Thông hiểu

    Tìm tứ phân vị

    Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.

    Tìm tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.

    Trung vị của mẫu số liệu trên là: \frac{34 + 34}{2} = 34.

    Trung vị của mẫu số liệu 30 32 33 34 là: \frac{32 + 33}{2} = 32,5.

    Trung vị của mẫu số liệu 34 35 36 38 là: \frac{35 + 36}{2} = 35,5.

    Vậy Q_{1} = 32,5;\ Q_{2} = 34;\ Q_{3} =
35,5.

  • Câu 37: Nhận biết

    Tìm câu không phải mệnh đề

    Trong các câu sau, câu nào không phải là một mệnh đề

    Ăn phở rất ngon! Không phải là câu khẳng định nên không là mệnh đề.

  • Câu 38: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho tam giác ABCG là trọng tâm. Gọi D là điểm đối xứng của B qua G và M là trung điểm của BC. Khi đó:

    a) \overrightarrow{MD} =
\overrightarrow{MG} + \overrightarrow{GD}. Đúng||Sai

    b) \overrightarrow{AG} =
2\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}. Sai||Đúng

    c) \overrightarrow{CD} =
\overrightarrow{AB} - \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{BG}. Sai||Đúng

    d) \overrightarrow{MD} = -
\frac{5}{6}\overrightarrow{AB} +
\frac{1}{6}\overrightarrow{AC}. Đúng||Sai

    Đáp án là:

    Cho tam giác ABCG là trọng tâm. Gọi D là điểm đối xứng của B qua G và M là trung điểm của BC. Khi đó:

    a) \overrightarrow{MD} =
\overrightarrow{MG} + \overrightarrow{GD}. Đúng||Sai

    b) \overrightarrow{AG} =
2\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}. Sai||Đúng

    c) \overrightarrow{CD} =
\overrightarrow{AB} - \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{BG}. Sai||Đúng

    d) \overrightarrow{MD} = -
\frac{5}{6}\overrightarrow{AB} +
\frac{1}{6}\overrightarrow{AC}. Đúng||Sai

    a) \overrightarrow{MD} =
\overrightarrow{MG} + \overrightarrow{GD} .

    Ta có: \overrightarrow{MD} =
\overrightarrow{MG} + \overrightarrow{GD}.

    b) \overrightarrow{AG} =
2\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.

    Ta có: \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3} \cdot \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} \right) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}.

    c) \overrightarrow{CD} =
\overrightarrow{AB} - \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{BG}.

    Ta có: \overrightarrow{CD} =
\overrightarrow{CB} + \overrightarrow{BD} = \overrightarrow{AB} -
\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BG}

    d) \overrightarrow{MD} = -
\frac{5}{6}\overrightarrow{AB} +
\frac{1}{6}\overrightarrow{AC}.

    Ta có:

    \overrightarrow{MD} = \overrightarrow{MG} + \overrightarrow{GD} = -\frac{1}{3}\overrightarrow{AM} + \overrightarrow{BG}

    = - \frac{1}{3}\cdot \frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC}\right) + \left( \overrightarrow{BA} + \frac{2}{3}\overrightarrow{AM}\right)

    = - \frac{1}{6}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AC} -\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB} +\frac{1}{3}\overrightarrow{AC}

    = - \frac{5}{6}\overrightarrow{AB} +\frac{1}{6}\overrightarrow{AC}

  • Câu 39: Thông hiểu

    Tìm tọa độ điểm C

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm C đối xứng với điểm B qua A?

    Gọi tọa độ điểm C là C(x;y)

    Vì điểm C đối xứng với điểm B qua A suy ra A là trung điểm của BC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{- 2 + x}{2} \\5 = \dfrac{6 + y}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\  \Leftrightarrow C(4;4)

    Vậy tọa độ điểm C cần tìm là C(4;4).

  • Câu 40: Thông hiểu

    Chọn đáp án đúng

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 41: Vận dụng cao

    Định m thỏa mãn phép toán

    Cho 2 tập khác rỗng A = (m - 1;4\rbrack;B
= ( - 2;2m + 2),m\mathbb{\in R}. Tìm m để A \cap B \neq \varnothing

    Đáp án - 1 < m < 5 đúng vì:

    Với 2 tập khác rỗng A, B ta có điều kiện

    \left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > - 2
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
m > - 2
\end{matrix} \right.\  \Leftrightarrow - 2 < m < 5.

    Để A \cap B \neq \varnothing
\Leftrightarrow m - 1 < 2m + 2 \Leftrightarrow m > -
3.

    So với kết quả của điều kiện thì - 2 <
m < 5.

  • Câu 42: Nhận biết

    Tính giá trị của biểu thức

    Giá trị của \tan45^{0} +\cot135^{0} bằng bao nhiêu?

    Ta có: \tan45^{0} + \cot135^{0} = 1 - 1 =0

  • Câu 43: Nhận biết

    Tính độ lệch chuẩn

    Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

    Độ lệch chuẩn là \sqrt{s^{2}} = \sqrt{8}
= 2\sqrt{2}.

  • Câu 44: Thông hiểu

    Tính độ dài vectơ

    Cho tam giác ABC đều cạnh a. Khi đó \left| \overrightarrow{AB} + \overrightarrow{AC}
\right| bằng:

    Hình vẽ minh họa

    Gọi H là trung điểm của BC \Rightarrow AH\bot BC.

    Suy ra AH = \frac{BC\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}.

    Ta lại có \left| \overrightarrow{AB} +
\overrightarrow{AC} \right| = \left| 2\overrightarrow{AH} \right| =
2.\frac{a\sqrt{3}}{2} = a\sqrt{3}.

  • Câu 45: Thông hiểu

    Xác định đẳng thức đúng

    Cho hình vuông ABCD cạnh a. Gọi E là điểm đối xứng của D qua C. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có C là trung điểm của DE nên DE =
2a.

    Khi đó:

    \overrightarrow{AE}.\overrightarrow{AB}
= \left( \overrightarrow{AD} + \overrightarrow{DE}
\right).\overrightarrow{AB} =
\underset{0}{\overset{\overrightarrow{AD}.\overrightarrow{AB}}{︸}} +
\overrightarrow{DE}.\overrightarrow{AB}

    = DE.AB.\cos\left(\overrightarrow{DE},\overrightarrow{AB} \right) = DE.AB.\cos0^{0} =2a^{2}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo