Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Vectơ

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Vectơ sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Có bao nhiêu tam giác thỏa mãn

    Cho tam giác ABC. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh A,\ B,\ C?

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{BC},\ \ \overrightarrow{CB},\ \
\overrightarrow{CA},\ \ \overrightarrow{AC}.

  • Câu 2: Nhận biết

    Khẳng định nào sau đây sai?

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 3: Thông hiểu

    Tìm các điểm thẳng hàng

    Trong hệ tọa độ Oxy, cho bốn điểm A(3;0),B(4; - 3),C(8; - 1),D( - 2;1). Các điểm nào trong các điểm đã cho thẳng hàng với nhau?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AC} = (5; - 1) \\
\overrightarrow{AD} = ( - 5;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AD}

    Vậy ba điểm A,C,D thẳng hàng.

  • Câu 4: Nhận biết

    Tính tích vô hướng

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

  • Câu 5: Vận dụng

    Tìm tọa độ điểm M thõa mãn điều kiện

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(3;4). Tìm tọa độ điểm M thuộc trục hoành sao cho A,\ B,\ M thẳng hàng.

    Điểm M \in
Ox\overset{}{ightarrow}M(m;0). Ta có \overrightarrow{AB} = (1;7)\overrightarrow{AM} = (m - 2;3).

    ĐểA,B,M thẳng hàng \Leftrightarrow \overrightarrow{AB} cùng phương với \overrightarrow{AM}
\Leftrightarrow \frac{m - 2}{1} = \frac{3}{7} \Leftrightarrow m =
\frac{17}{7}.

  • Câu 6: Thông hiểu

    Tìm tọa độ điểm M thỏa mãn đẳng thức vectơ

    ChoA(2;\ 5),\ B(1;\ 3),\ C(5;\  -
1). Tìm tọa độ điểm K sao cho \overrightarrow{AK} =
3\overrightarrow{BC} + 2\overrightarrow{CK}?

    Gọi K(x;y) với x,y\mathbb{\in R}.

    Khi đó \overrightarrow{AK} = (x - 2;y -
5), 3\overrightarrow{BC} = (12; -
12), 2\overrightarrow{CK} = (2x -
10;2y + 2).

    Theo yêu cầu bài toán ta có:

    \overrightarrow{AK} =
3\overrightarrow{BC} + 2\overrightarrow{CK} nên \left\{ \begin{matrix}
x - 2 = 12 + 2x - 10 \\
y - 5 = - 12 + 2y + 2
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 5
\end{matrix} \right.\  \Rightarrow K( - 4;5).

  • Câu 7: Nhận biết

    Chọn kết luận đúng

    Vectơ \overrightarrow{a} = ( -
4;0) được phân tích theo hai vectơ đơn vị như thế nào?

    Ta có: \overrightarrow{a} = ( - 4;0)
\Rightarrow \overrightarrow{a} = - 4\overrightarrow{i} +
0\overrightarrow{j} = - 4\overrightarrow{i}.

  • Câu 8: Nhận biết

    Chọn đáp án thích hợp

    Cho O là tâm hình bình hành ABCD. Hỏi vectơ \left( \overrightarrow{AO} - \overrightarrow{DO}
\right) bằng vectơ nào?

    Hình vẽ minh họa

    Ta có:  \overrightarrow{AO} -
\overrightarrow{DO} = \overrightarrow{OD} - \overrightarrow{OA} =
\overrightarrow{AD} = \overrightarrow{BC}.

  • Câu 9: Nhận biết

    Tìm tọa độ của vectơ thỏa mãn

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{i} + \overrightarrow{j}

    Ta có \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{i} +
\overrightarrow{j} = (1;1).

  • Câu 10: Nhận biết

    Chọn đẳng thức sai

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 11: Thông hiểu

    Chọn đẳng thức đúng

    Gọi M,\ \ N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có MN là đường trung bình của tam giác ABC.

    Do đó BC = 2MN \rightarrow \left|
\overrightarrow{BC} \right| = 2\left| \overrightarrow{MN}
\right|.

  • Câu 12: Thông hiểu

    Chọn mệnh đề sai

    Cho hình vuông ABCD có tâm là O. Mệnh đề nào sau đây sai ?

    Ta có \overrightarrow{OA} +
\overrightarrow{OB} = - \ \overrightarrow{OC} + \overrightarrow{OB} =
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} (vì \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{0}).

  • Câu 13: Thông hiểu

    Chọn đẳng thức đúng

    Cho các điểm phân biệt A,\ B,\ C,\
D. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{DC} +
\overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD} +
\overrightarrow{BC}.

  • Câu 14: Vận dụng cao

    Tìm điều kiện của x và y

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 15: Thông hiểu

    Tính tích vô hướng

    Cho các vectơ \overrightarrow{a} = (1; - 3),\ \
\overrightarrow{b} = (2;5). Tính tích vô hướng của \overrightarrow{a}\left( \overrightarrow{a} +
2\overrightarrow{b} ight).

    Ta có \overrightarrow{a}.\overrightarrow{a} =
10, \overrightarrow{a}.\overrightarrow{b} = -
13 suy ra \overrightarrow{a}\left(
\overrightarrow{a} + 2\overrightarrow{b} ight) = - 16.

  • Câu 16: Nhận biết

    Tính tích vô hướng của hai vce y

    Cho tam giác ABC cân tại A, \widehat{A} = 120^{o}AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có:

    \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{0} = - \frac{1}{2}a^{2}.

  • Câu 17: Thông hiểu

    Tìm tọa độ điểm P

    Cho hai điểm M(8; - 1),\ N(3;2). Nếu P là điểm đối xứng với điểm M qua điểm N thì P có tọa độ là:

    Ta có: P là điểm đối xứng với điểm M qua điểm N nên N là trung điểm đoạn thẳng PM

    Do đó, ta có: \left\{ \begin{matrix}3 = \dfrac{8 + x_{P}}{2} \\2 = \dfrac{( - 1) + y_{P}}{2}\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}x_{P} = - 2 \\y_{P} = 5\end{matrix} \right.\  \Rightarrow P( - 2;5).

  • Câu 18: Nhận biết

    Tìm khẳng định sai

    Chọn khẳng định sai:

    Ta có: \overrightarrow{IA} -
\overrightarrow{IB} = \overrightarrow{BA} \neq
\overrightarrow{0}.

  • Câu 19: Thông hiểu

    Chọn đẳng thức đúng

    Cho tam giác ABCI,\ D lần lượt là trung điểmAB,\ CI. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có:

    \overrightarrow{BD} =
\overrightarrow{BI} + \overrightarrow{ID} = -
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{IC}

    = - \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\left( \overrightarrow{IA} + \overrightarrow{AC}
\right)

    = - \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{IA} +
\frac{1}{2}\overrightarrow{AC}

    = - \frac{1}{2}\overrightarrow{AB} -
\frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} = -
\frac{3}{4}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}.

  • Câu 20: Nhận biết

    Chọn phương án thích hợp

    Cho \overrightarrow{a},\ \
\overrightarrow{b}\không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ }là:

    Ta có:

    - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } \right) =
\frac{1}{2}\overrightarrow{\ x\ }.

    Vậy đáp án cần tìm là: - \
\overrightarrow{\ a\ \ } + \frac{1}{2}\overrightarrow{\ b\
}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo