Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Vectơ

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Vectơ sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm cặp vectơ cùng phương

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương ?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} \right) nên hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\ \  -
10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 2: Nhận biết

    Chọn mệnh đề đúng

    Gọi O là giao điểm của hai đường chéo hình chữ nhật ABCD. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: \left|
\overrightarrow{AC} \right| = \left| \overrightarrow{BD}
\right|.

  • Câu 3: Nhận biết

    Tìm khẳng định đúng

    Cho hình bình hành ABCDcó tâm O. Khẳng định nào sau đây là đúng:

    Hình vẽ minh họa:

    Ta có: \overrightarrow{AB} +
\overrightarrow{CA} = \overrightarrow{CB} =
\overrightarrow{DA} .

  • Câu 4: Nhận biết

    Chọn đẳng thức sai

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 5: Thông hiểu

    Chọn đẳng thức đúng

    Cho các điểm phân biệt A,\ B,\ C,\
D. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB},\ \overrightarrow{DC} -
\overrightarrow{BC} = \overrightarrow{DC} + \overrightarrow{CB} =
\overrightarrow{DB}.

    Vậy: \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DC} -
\overrightarrow{BC}.

  • Câu 6: Nhận biết

    Tính tích vô hướng giữa hai vectơ

    Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a.Tính \overrightarrow{DA}.\overrightarrow{BC}  

    Ta có:

    \overrightarrow{DA}.\overrightarrow{BC} =
\overrightarrow{DA}.\left( \overrightarrow{BA} + \overrightarrow{AD} +
\overrightarrow{DC} \right) = \overrightarrow{DA}.\overrightarrow{AD} =
- 9a^{2}

  • Câu 7: Nhận biết

    Chọn đẳng thức đúng

    Cho các điểm phân biệt A,B,C. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AB} = \overrightarrow{AC}
+ \overrightarrow{CB} = \overrightarrow{CB} +
\overrightarrow{AC} .

    Vậy khẳng định đúng cần tìm là: \overrightarrow{AB} = \overrightarrow{CB} +
\overrightarrow{AC} .

  • Câu 8: Thông hiểu

    Tìm hệ thức sai

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    Phương án \left( \overrightarrow{AB},\
\overrightarrow{BC} \right) = 130^{o}: \left( \overrightarrow{AB},\ \overrightarrow{BC}
\right) = 180^{0} - \left( \overrightarrow{AB},\ \overrightarrow{CB}
\right) = 130^{o} nên loại.

    Phương án \left( \overrightarrow{BC},\
\overrightarrow{AC} \right) = 40^{o}: \left( \overrightarrow{BC},\ \overrightarrow{AC}
\right) = \left( \overrightarrow{CB},\ \overrightarrow{CA} \right) =
40^{o} nên loại.

    Phương án \left( \overrightarrow{AB},\
\overrightarrow{CB} \right) = 50^{o}: \left( \overrightarrow{AB},\ \overrightarrow{CB}
\right) = \left( \overrightarrow{BA},\ \overrightarrow{BC} \right) =
50^{o} nên loại .

    Phương án \left( \overrightarrow{AC},\
\overrightarrow{CB} \right) = 120^{o}:\left( \overrightarrow{AC},\ \overrightarrow{CB}
\right) = 180^{0} - \left( \overrightarrow{CA},\ \overrightarrow{CB}
\right) = 140^{o}nên chọn.

  • Câu 9: Thông hiểu

    Tìm M để ba điểm A, B, M thẳng hàng

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

  • Câu 10: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Cho \overrightarrow{a} = (x;2),\ \overrightarrow{b} =
( - 5;1),\ \overrightarrow{c} = (x;7). Tìm x biết \overrightarrow{c} = 2\overrightarrow{a} +
3\overrightarrow{b}.

    Ta có \left\{ \begin{matrix}2\overrightarrow{a} = (2x;4) \\3\overrightarrow{b} = ( - 15;3) \\\end{matrix} ight.\ \overset{}{ightarrow}2\overrightarrow{a} +3\overrightarrow{b} = (2x - 15;7).

    Để \overrightarrow{c} =
2\overrightarrow{a} +
3\overrightarrow{b}\overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = 2x - 15 \\
7 = 7 \\
\end{matrix} ight.\ \overset{}{ightarrow}x = 15.

  • Câu 11: Nhận biết

    Tìm tọa độ trung điểm

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 12: Vận dụng

    Phân tích một vectơ theo hai vectơ khác

    Cho các vectơ \overrightarrow{a} = (4; - 2),\overrightarrow{b} =
( - 1; - 3),\overrightarrow{c} = (2;5). Phân tích vectơ \overrightarrow{b} theo hai vectơ \overrightarrow{a}\ và\
\overrightarrow{c}, ta được:

    Giả sử \overrightarrow{b} =m\overrightarrow{a} + n\overrightarrow{c} \Leftrightarrow \left\{\begin{matrix}- 1 = 4m + 2n \\- 3 = - 2m + 5n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{1}{24} \ = - \frac{7}{12} \\\end{matrix} ight.. Vậy \overrightarrow{b} =
\frac{1}{24}\overrightarrow{a} -
\frac{7}{12}\overrightarrow{c}.

  • Câu 13: Nhận biết

    Chọn đáp án đúng

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 14: Vận dụng cao

    Tìm độ dài bán kính của đường tròn

    Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight| là đường tròn cố định có bán kính R. Tính bán kính R theo a.

    Gọi G là trọng tâm của tam giác ABC. Ta có

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) + 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 4\left(\overrightarrow{MI} + \overrightarrow{IC} ight).

    Chọn điểm I sao cho 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow 3\left(\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} ight)+ \overrightarrow{IC} - \overrightarrow{IA} =\overrightarrow{0}.

    G là trọng tâm của tam giác ABCnên \overrightarrow{IA} + \overrightarrow{IB} +
\overrightarrow{IC} = 3\ \overrightarrow{IG}.

    Khi đó \overrightarrow{IG} +\overrightarrow{IC} - \overrightarrow{IA} = \overrightarrow{0}\Leftrightarrow 9\ \overrightarrow{IG} + \overrightarrow{AI} +\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow \overrightarrow{IG} = \overrightarrow{CA}. (*)

    Do đó \left| 2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC} ight| = \left|\overrightarrow{MB} - \overrightarrow{MA} ight|\Leftrightarrow \left|9\overrightarrow{MI} + 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} ight| = \left| \overrightarrow{AB} ight|\Leftrightarrow 9MI = AB.

    I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính R
= \frac{AB}{9} = \frac{a}{9}.

  • Câu 15: Nhận biết

    Tìm tọa độ hai điểm A và B

    Tam giác ABCC( - 2; - 4), trọng tâm G(0;4), trung điểm cạnh BC M(2;0). Tọa độ AB là:

    Ta có: M(2;0) là trung điểm BC nên \left\{
\begin{matrix}
2 = \frac{x_{B} + ( - 2)}{2} \\
0 = \frac{y_{B} + ( - 4)}{2}
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 6 \\
y_{B} = 4
\end{matrix} \right.\  \Rightarrow B(6;4)

    G(0;4) là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
0 = \frac{x_{A} + 6 + ( - 2)}{3} \\
4 = \frac{y_{A} + 4 + ( - 4)}{3}
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A} = - 4 \\
y_{A} = 12
\end{matrix} \right.\  \Rightarrow A( - 4;12).

  • Câu 16: Nhận biết

    Tính giá trị biểu thức P

    Cho hình vuông ABCD cạnh a. Tính P =
\overrightarrow{AC}.\left( \overrightarrow{CD} + \overrightarrow{CA}
\right)?

    Từ giả thiết suy ra AC =
a\sqrt{2}

    Ta có:

    P = \overrightarrow{AC}.\left(\overrightarrow{CD} + \overrightarrow{CA} \right)=\overrightarrow{AC}.\overrightarrow{CD} +\overrightarrow{AC}.\overrightarrow{CA}= -\overrightarrow{CA}.\overrightarrow{CD} -{\overrightarrow{AC}}^{2}

    = - CA.CD\cos\left(\overrightarrow{CA},\overrightarrow{CD} \right) - AC^{2}= -a\sqrt{2}.a.\cos45^{0} - \left( a\sqrt{2} \right)^{2} = -3a^{2}

  • Câu 17: Thông hiểu

    Chọn kết luận đúng

    Xét các phát biểu sau:

    (1) Điều kiện cần và đủ để C là trung điểm của đoạn AB\overrightarrow{BA} =-2\overrightarrow{AC}

    (2) Điều kiện cần và đủ để C là trung điểm của đoạn\ AB\overrightarrow{CB} =
\overrightarrow{CA}

    (3) Điều kiện cần và đủ để M là trung điểm của đoạn PQ\overrightarrow{PQ} =
2\overrightarrow{PM}

    Trong các câu trên, thì:

    Ta có

    (1) Điều kiện cần và đủ để C là trung điểm của đoạn AB\overrightarrow{BA) }= -2\overrightarrow{AC}

    (3) Điều kiện cần và đủ để M là trung điểm của đoạn PQ\overrightarrow{PQ} =
2\overrightarrow{PM}

    Phát biểu sai: (2) Điều kiện cần và đủ để C là trung điểm của đoạn AB\overrightarrow{CB} =
\overrightarrow{CA}

    Do đó câu (1) và câu (3) là đúng.

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính \left| \overrightarrow{CA} - \overrightarrow{HC}
\right|.

    Hình vẽ minh họa

    Gọi D là điểm thỏa mãn tứ giác ACHD là hình bình hành.

    \Rightarrow AHBD là hình chữ nhật.

    \left| \overrightarrow{CA} -
\overrightarrow{HC} \right| = \left| \overrightarrow{CA} +
\overrightarrow{CH} \right| = \left| \overrightarrow{CD} \right| =
CD.

    Ta có: CD = \sqrt{BD^{2} + BC^{2}} =
\sqrt{AH^{2} + BC^{2}}

    = \sqrt{\frac{3a^{2}}{4} + a^{2}} =
\frac{a\sqrt{7}}{2}.

  • Câu 19: Nhận biết

    Chọn phương án thích hợp

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 20: Thông hiểu

    Tính tích vô hướng

    Cho hình thang vuông ABCDcó đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD . Khi đó \left( \overrightarrow{IA} + \overrightarrow{IB}
\right).\overrightarrow{ID} bằng:

    Ta có:

    \left( \overrightarrow{IA} +\overrightarrow{IB} \right).\overrightarrow{ID} = \left(\overrightarrow{IA} + \overrightarrow{IA} + \overrightarrow{AB}\right).\overrightarrow{ID}

    = 2\overrightarrow{IA}.\overrightarrow{ID} =- \frac{9a^{2}}{2}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo