Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 8 Đại số tổ hợp sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm số phần tử trong khai triển

    Cho biểu thức (m
+ n)^{5}, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?

    Trong khai triển nhị thức Newton (m +
n)^{5}5 + 1 = 6 số hạng.

  • Câu 2: Nhận biết

    Tính số cách chọn quyển sách

    Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?

    Số cách chọn sách Toán là 20 cách.

    Số cách chọn sách Vật lí là 40 cách.

    Số cách chọn sách Hóa học là 50 cách.

    Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.

  • Câu 3: Thông hiểu

    Tìm số hạng không chứa x trong khai triển

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 4: Thông hiểu

    Tính số các số tự nhiên được tạo thành

    Cho tập hợp B =
\left\{ 0,1,2,3,4,5,6,7 ight\}. Có bao nhiêu số tự nhiên gồm ba chữ số được lập từ B sao cho chữ số đằng sau luôn lớn hơn chữ số đẳng trước nó?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a \leq b \leq c)

    TH1: a < b < cC_{7}^{3} = 35 số thỏa mãn.

    TH2: a = b < cC_{7}^{2} = 21 số thỏa mãn.

    TH3: a < b = cC_{7}^{2} = 21 số thỏa mãn.

    TH4: a = b = cC_{7}^{1} = 7 số thỏa mãn.

    Vậy số các số được tạo thành là: 35 +
2.21 + 7 = 84 số.

  • Câu 5: Thông hiểu

    Xác định các số tự nhiên lập được thỏa mãn yêu cầu

    Từ 6 chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và 2?

    Gọi số cần tìm có dạng \overline{abcde}

    Số cách sắp xếp số 1; 2 vào 5 vị trí ta có: A_{5}^{2} cách

    3 vị trí còn lại có A_{4}^{3} cách

    Vậy số cần thành lập là: A_{5}^{2}.A_{4}^{3} = 480 số.

  • Câu 6: Nhận biết

    Số số hạng trong khai triển là

    Số số hạng trong khai triển (x + 2)^{50} là:

    Số số hạng trong khai triển là: n + 1 =
50 + 1 = 51.

  • Câu 7: Nhận biết

    Bạn học sinh đó có bao nhiêu cách chọn

    Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?

    Số cách chọn một quyển sách là 8 cách.

    Số cách chọn một cái bút là 10 cách. 

    => Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách. 

  • Câu 8: Thông hiểu

    Tìm số hạng

    Tìm số hạng chứa x^{5} trong khai triển \left( x - \frac{2}{x} ight)^{n}, biết n là số tự nhiên thỏa mãn C_{n}^{3} = \frac{4}{3}n +
2C_{n}^{2}.

    Điều kiện : n \geq 3,\ n \in
\mathbb{Z}.

    Ta có C_{n}^{3} = \frac{4}{3}n +2C_{n}^{2} \Leftrightarrow \frac{n!}{3!(n - 3)!} = \frac{4}{3}n +\frac{n!}{(n - 2)!}

    \Leftrightarrow n(n - 1)(n - 2) = 8n + 6n(n -1)

    \Leftrightarrow n^{2} - 3n + 2 = 8 + 6n -
6 \Leftrightarrow n^{2} - 9n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0 \\
n = 9 \\
\end{matrix} ight.. Đối chiếu điều kiện ta được n = 9.

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x} ight)^{9},là : C_{9}^{k}x^{9 - k}.\frac{( - 2)^{k}}{x^{k}} = ( -
2)^{k}C_{9}^{k}x^{9 - 2k}

    Số hạng này chứa x^{5}ứng với 9 - 2k = 5 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng đó là 4.C_{9}^{2} =
144.

  • Câu 9: Thông hiểu

    Tìm hệ số của số hạng

    Tìm hệ số của x^{5} trong khai triển (1 + 3x)^{2n} biết A_{n}^{3} + 2A_{n}^{2} = 100.

    Ta có: A_{n}^{3} + 2A_{n}^{2} = 100
\Leftrightarrow \frac{n!}{(n - 3)!} + 2\frac{n!}{(n - 2)!} = 100
\Leftrightarrow n(n - 1)(n - 2) + 2n(n - 1) = 100

    \Leftrightarrow n^{3} - n^{2} - 100 = 0
\Leftrightarrow n = 5.

    Ta có: (1 + 3x)^{2n} = (1 + 3x)^{10} =
\sum_{k = 0}^{10}{C_{10}^{k}(3x)^{k}}.

    Hệ số x^{5} sẽ là C_{10}^{5}3^{5} = 61236.

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:

    Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.

  • Câu 11: Nhận biết

    Số cách chọn hai học sinh

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 12: Thông hiểu

    Chọn đáp án đúng

    Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

    Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.

    Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.

    Vì vậy số hoán vị 6 đối tượng là 6!.

    Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.

    Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!

    Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.

  • Câu 13: Nhận biết

    Chọn đáp án chính xác

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 14: Nhận biết

    Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.

    Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.

    Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.

  • Câu 15: Nhận biết

    Tính giá trị tham số n

    Biết rằng khai triển nhị thức Newton (m + 2)^{n - 3} với n\mathbb{\in N},n > 3;m eq - 2 có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (m +
2)^{n - 3} đã cho có tất cả 6 số hạng nên n - 3 = 5 \Rightarrow n = 8

    Vậy n = 8 là giá trị cần tìm.

  • Câu 16: Thông hiểu

    Xác định số các số tự nhiên có 8 chữ số thỏa mãn yêu cầu

    Cho tập A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5?

    Vì x lẻ và không chia hết cho 5 nên d \in
\left\{ 1;3;7 ight\}=> Có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 17: Vận dụng

    Có bao nhiêu số tự nhiên thỏa mãn được lập từ tập A

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Tìm n

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180.Tìm n.

    Ta có: T_{k + 1} =
C_{n}^{k}.2^{k}x^{k}..

    Hệ số của x^{2} trong khai triển bằng 180

    C_{n}^{2}.2^{2} = 180 \Leftrightarrow\frac{n!}{(n - 2).2}.2^{2} = 180 \Leftrightarrow n(n - 1) = 90

    \Leftrightarrow n^{2} - n - 90 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 10 \ = - 9(l) \\\end{matrix} ight.

  • Câu 19: Vận dụng

    Tính tổng các chữ số

    Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?

    Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.

    Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : 24\left( 10^{4} + 10^{3} + 10^{2} + 10 + 1 ight)
= 24.11111.

    Vậy tổng các số có 5 chữ số là : 24.11111(1 + 2 + 3 + 4 + 5) =
3999960.

  • Câu 20: Nhận biết

    Có bao nhiêu số có 3 chữ số được lập từ 6 chữ số trên

    Cho 6 chữ số 2, 3, 4, 5, 6, 7. Có bao nhiêu số có 3 chữ số được lập từ 6 chữ số đó?

    Trong 6 chữ số đã cho không có chữ số 0, số có 3 chữ số không yêu cầu khác nhau nên mỗi chữ số đều có 6 cách chọn, do đó số các số thỏa mãn 63 = 216.

  • Câu 21: Nhận biết

    Tính số cách thực hiện công việc

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 22: Vận dụng

    Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Gọi số cần tìm có dạng \overline{abcd}. Vì \overline{abcd} chia hết cho 10 suy ra d = 0.

    TH1. Với a = 5, ta có

    + Nếu b = 4 suy ra c = \left\{ 0;1 ight\}, do đó có 2 số cần tìm.

    + Nếu b < 4 suy ra b = \left\{ 0;1 ight\}c = \left\{ 0;1;4;5;6;7;9 ight\}, do đó có 14 số cần tìm.

    TH2. Với a < 5
\Rightarrow a = \left\{ 1;4 ight\} suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn

    C.

    Suy ra có 2 \times 7 \times 7 =
98 số cần tìm. Vậy có tất cả 114 số cần tìm.

  • Câu 23: Vận dụng

    Tìm số tập con khác rỗng thỏa mãn điều kiện

    Một tập hợp M gồm 20 phần tử. Hỏi M có bao nhiêu tập con khác rỗng mà có số phần tử chẵn?

    Tổng số các tập con của tập M là: 2^{20}

    Trong đó số tập con khác rỗng và có số phần tử chẵn là:

    C_{20}^{2} + C_{20}^{4} + ... +
C_{20}^{20}

    Lại có: C_{20}^{0} + C_{20}^{1} +
C_{20}^{2} + ... + C_{20}^{19} + C_{20}^{20} = (1 + 1)^{20} =
2^{20}

    C_{20}^{0} - C_{20}^{1} + C_{20}^{2} +
... - C_{20}^{19} + C_{20}^{20} = (1 - 1)^{20} = 0

    Do đó:

    C_{20}^{0} + C_{20}^{2} + C_{20}^{4} +
... + C_{20}^{20} = C_{20}^{1} + C_{20}^{3} + C_{20}^{5} + ... +
C_{20}^{17} + C_{20}^{19} = 2^{19}

    \Rightarrow C_{20}^{2} + C_{20}^{4} +
... + C_{20}^{20} = 2^{19} - C_{20}^{0} = 2^{19} - 1

  • Câu 24: Nhận biết

    Hỏi có bao nhiêu cách phân công

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 25: Nhận biết

    Khai triển nhị thức

    Khai triển nhị thức (2x + 3)^{4} ta được kết quả là:

     Ta có: (2x + 3)^{4} =16x^{4} + 96x^{3} + 216x^{2} + 216x + 81.

  • Câu 26: Vận dụng

    Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 27: Thông hiểu

    Tính số cách lập các số nguyên dương n

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa yêu cầu bài toán.

    Chọn a_{5} \in X\backslash\left\{ 3
ight\} có: 8 cách.

    Chọn a_{1} \in X\backslash\left\{ a_{5}
ight\} có: 8 cách.

    Chọn a_{2} \in X\backslash\left\{
a_{1};a_{5} ight\} có: 7 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{5};a_{2} ight\} có: 6 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{5};a_{2};a_{3} ight\} có: 5 cách.

    Theo quy tắc nhân có: 8.8.7.6.5 =
13440 số.

  • Câu 28: Nhận biết

    Hỏi có bao nhiêu cách sắp xếp

    Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

    Số cách sắp xếp 5 học sinh thành một hàng dọc là 5!.

  • Câu 29: Vận dụng

    Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8).

    Trường hợp này có 2!.6 số.

    Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1;3),(3;4),(5;8), hoán vị được 2!.3 + 2 số.

    Chữ số cuối bằng 4 ta có các bộ (2;0),(2;3),(3;5),(3;8), hoán vị được 2!.3 + 1 số.

    Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1;3),(2;5),(3;4), hoán vị được 2!.3 + 2 số.

    Kết hợp lại ta có 35 số.

  • Câu 30: Nhận biết

    Khai triển nhị thức

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 31: Thông hiểu

    Chọn đáp án đúng

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là một số lẻ?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in \left\{ 1;3;5;7;9
ight\} có: 5 cách.

    Theo quy tắc nhân có: 9.10.10.10.5 =
45000 số.

  • Câu 32: Nhận biết

    Hỏi có bao nhiêu cách sắp xếp

    Một nhóm học sinh gồm 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp 9 học sinh trên thành 1 hàng dọc sao cho nam nữ đứng xen kẽ?

    Xếp 4 học sinh nam thành hàng dọc có 4! cách xếp.

    Giữa 4 học sinh nam có 5 khoảng trống ta xếp các bạn nữ vào vị trí đó nên có 5! cách xếp.

    Theo quy tắc nhân có 4!5! = 2880 cách xếp thoả mãn.

  • Câu 33: Thông hiểu

    Tìm số cách chọn tổ công tác

    Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.

    Trường hợp 1: An và Bình không có mặt trong tổ công tác:

    Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có C_{12}^{6} cách.

    Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:

    Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có C_{12}^{5} cách

    Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có C_{12}^{5} cách.

    Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng

    Như vậy có tất cả số cách là: \left(
C_{12}^{6} + C_{12}^{5} + C_{12}^{5} ight).6 = 15048 cách

  • Câu 34: Vận dụng

    Tìm hệ số của số hạng

    Tìm hệ số của x^{4} trong khai triển nhị thức Newton \left( 2x + \frac{1}{\sqrt[5]{x}}
ight)^{n} với x > 0, biết n là số tự nhiên lớn nhất thỏa mãn A_{n}^{5} \leq 18A_{n -
2}^{4}.

    Điều kiện: \left\{ \begin{matrix}
n \geq 6 \\
n\mathbb{\in Z} \\
\end{matrix} ight.

    Khi đó A_{n}^{5} \leq 18A_{n - 2}^{4}
\Leftrightarrow \frac{n!}{(n - 5)!} \leq 18.\frac{(n - 2)!}{(n -
6)!}

    \Leftrightarrow n(n - 1)(n - 2)(n - 3)(n
- 4) \leq 18(n - 2)(n - 3)(n - 4)(n - 5)

    \Leftrightarrow n(n - 1) \leq 18(n -
5) \Leftrightarrow n^{2} - 19n + 90
\leq 0 \Leftrightarrow 9 \leq n
\leq 10\overset{n ightarrow \max}{ightarrow}n = 10.

    Số hạng tổng quát trong khai triển \left(
2x + \frac{1}{\sqrt[5]{x}} ight)^{10}T_{k + 1} = C_{10}^{k}.(2x)^{10 - k}.\left(
\frac{1}{\sqrt[5]{x}} ight)^{k}

    = C_{10}^{k}.2^{10 - k}.x^{10 - k}.x^{-
\frac{k}{5}} = C_{10}^{k}.2^{10 -
k}.x^{\frac{50 - 6k}{5}}.

    Tìm k sao cho \frac{50 - 6k}{5} = 4 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{4}C_{10}^{5}.2^{10 - 5} =
8064..

  • Câu 35: Thông hiểu

    Tính số tam giác được tạo thành

    Cho tam giác ABC. Trên mỗi cạnh AB; BC, AC lấy 9 điểm phân biệt là không có điểm nào trùng với 3 đỉnh A, B, C. Hỏi từ 30 điểm đã cho (tính cả A; B; C) có thể lập được bao nhiêu tam giác?

    Để tạo ra một tam giác ta lấy 3 điểm không thẳng hàng

    Ta xét cách lấy ba điểm thẳng hàng thì có 3 trường hợp là: 3 điểm thuộc đoạn AB, 3 điểm thuộc đoạn AC, điểm thuộc đoạn BC. Trên mỗi đoạn thẳng có 11 điểm nên số cách lấy 3 điểm trên mỗi đoạn là: C_{11}^{3}

    Số cách lấy 3 điểm bất kì trong 30 điểm là: C_{30}^{3}

    Vậy số tam giác được tạo ra từ 30 điểm đã cho là: C_{30}^{3} - 3.C_{11}^{3} = 3565 tam giác.

  • Câu 36: Nhận biết

    Tính giá trị biểu thức

    Giá trị của C_{n}^{0}-C_{n}^{1}+C_{n}^{n-1}-C_{n}^{n} bằng:

    Ta có:

    \begin{matrix}  C_n^0 - C_n^1 + C_n^{n - 1} - C_n^n \hfill \\   = 1 - C_n^1 + C_n^1 - 1 = 0 \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Chọn khai triển chính xác

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả:

    Ta có: (x + 1)^{4} = x^{4} + 4x^{3} + 6x^{2} +
4x + 1

  • Câu 38: Thông hiểu

    Chọn đáp án đúng

    : Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?

    Có 4 bộ sách được sắp 4 vị trí có 4! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! cách

    Sắp xếp 5 quyển sách Sinh có 5! cách

    Vậy số cách sắp xếp số sách trên kệ theo từng môn là: 4!.2!.3!.4!.5! = 829440 cách.

  • Câu 39: Nhận biết

    Tìm số cạnh đa giác thỏa mãn yêu cầu

    Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo đề bài ta có:

    \frac{n(n - 3)}{2} = 54 \Leftrightarrow
n^{2} - 3n - 108 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = - 9(ktm) \\
n = 12(tm) \\
\end{matrix} ight.

    Vậy đa giác có 12 cạnh.

  • Câu 40: Vận dụng

    Có bao nhiêu số tự nhiên gồm 5 chữ số thỏa mãn

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo