Tìm số hạng thỏa mãn điều kiện
Tìm số hạng chứa
trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Đề kiểm tra 45 phút Toán 10 Chương 8 Đại số tổ hợp sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tìm số hạng thỏa mãn điều kiện
Tìm số hạng chứa
trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Có bao nhiêu số tự nhiên gồm 5 chữ số thỏa mãn
Cho các số
. Số các số tự nhiên gồm
chữ số lấy từ
chữ số trên sao cho chữ số đầu tiên bằng
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Tính số cách tặng sách của thầy giáo
Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lý và 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 học sinh A, B, C, D, E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu có ít nhất một cuốn sách Toán được tặng.
Số cách lấy 5 cuốn sách trong tổng số 10 cuốn sách ở ba thể loại để tặng cho 5 học sinh là (cách)
Số cách lấy 5 cuốn sách để chia cho 5 học sinh trong đó không có cuốn sách Toán nào là (cách).
Vậy số cách lấy 5 cuốn sách thỏa ycbt là: cách.
Lập được bao nhiêu tam giác thỏa mãn
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Hỏi có bao nhiêu cách chọn một bộ quần và áo?
Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?
Số cách bạn Công chọn một chiếc áo mới là: 12 cách.
Số cách bạn Công chọn một chiếc quần mới là: 15 cách.
Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.
Chọn đáp án chính xác
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?
Số cách lấy 5 con trong đó có 1 con át và 1 con vua là .
Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và là số lẻ?
Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và là số lẻ?
Gọi số thỏa mãn đề bài có dạng .
Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.
Vị tri A: có 8 cách chọn, bỏ số 0 và khác 1 số ở vị trí C.
Vị trí B: có 8 cách chọn, khác 1 số ở vị trí C, 1 số ở vị trí A.
Áp dụng quy tắc nhân, có 5.8.8 = 320 (số).
Xác định kết quả chính xác
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc và tất cả các học sinh trong mỗi hàng ngang đều cùng trường?
Giả sử 4 hàng dọc được kí hiệu là
Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10
Theo yêu cầu bài toán thì:
Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số chẵn, D3 ghi số chẵn, D4 ghi số chẵn.
Các bạn trường B ở các vị trí còn lại hoặc ngược lại.
Nên số cách xếp là cách
Chọn đáp án đúng
Một nhóm học sinh gồm 6 nam và 4 nữ. Cần chọn ra một nhóm 5 người gồm cả nam và nữ đi trực nhật. Hỏi có bao nhiêu cách chọn nếu số bạn nữ luôn nhiều hơn số bạn nam.
Trường hợp 1: 4 nữ, 1 nam
Chọn 4 nữ từ 4 nữ và 1 nam từ 6 nam, có: (cách).
Trường hợp 2: 3 nữ, 2 nam, có: (cách).
Vậy có (cách).
Chọn đáp án đúng
Kết quả của phép tính
là:
Ta có: .
Chọn kết quả chính xác
Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?
Gọi số cần tìm có dạng
Trường hợp 1: . Có 1 số thỏa mãn yêu cầu bài toán.
Trường hợp2:
a có 1 cách chọn.
c có 1 cách chọn.
b có 2 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 3:
a có 1 cách chọn.
c có 2 cách chọn.
b có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Vậy có: (số).
Hỏi có bao nhiêu cách chọn?
Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?
Chọn 4 Toán, 2 Văn, 2 Lí có cách.
Chọn 4 Toán, 1 Văn, 3 Lí có cách.
Chọn 5 Toán, 2 Văn, 1 Lí có cách.
Chọn 5 Toán, 1 Văn, 2 Lí có cách.
Chọn 6 Toán, 1 Văn, 1 Lí có cách.
Tổng lại ta được 181440 cách thỏa mãn.
Chọn kết quả chính xác
Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu đã chọn áo trắng thì không chọn cà vạt vàng?
Số cách chọn áo trắng không chọn cà vạt vàng là:
Số cách chọn bộ áo và cà vạt sao cho không phải áo trắng và cà vạt bất kì trong 5 cái cà vạt là:
Số cách chọn bộ áo và cà vạt sao cho áo trắng thì không chọn cà vạt vàng là
Số các hoán vị của n phần tử
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Xác định số cách chọn đồ vật
Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:
Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.
Tìm số phần tử trong khai triển
Cho biểu thức
, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?
Trong khai triển nhị thức Newton có
số hạng.
Hỏi có bao nhiêu cách phân công
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Có bao nhiêu số tự nhiên thỏa mãn được lập từ tập A
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Chọn công thức đúng
Cho tập hợp
gồm
phần tử. Số các tổ hợp chập
của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
Số các tổ hợp chập của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
.
Tìm n
Trong khai triển nhị thức
(
). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển có 6 hạng tử
=>
Hỏi có bao nhiêu cách chọn 3 người sao cho luôn có 2 màu áo khác nhau
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Trường hợp 1: Chọn 1 nam. Có 15 cách.
Trường hợp 2: Chọn 1 nữ. Có 20 cách.
Vậy có 15+20 = 35 cách.
Chọn đáp án đúng
Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.
Chọn 3 viên bi từ 20 viên bi: cách.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Xác định số hạng theo yêu cầu
Tìm số hạng chứa
trong khai triển
?
Số hạng tổng quát theo thứ tự giảm dần số mũ x là:
Số hạng chứa ứng với
Số hạng cần tìm là .
Hỏi có bao nhiêu số có 4 chữ số đôi một khác nhau và là số lẻ
Hỏi có bao nhiêu số có 4 chữ số đôi một khác nhau và là số lẻ.
Gọi số cần lập có dạng: .
D: có 5 cách chọn (1,3,5,7)
A: có 8 cách chọn (khác D và khác 0)
B: có 8 cách chọn (khác D và khác 0)
C: có 7 cách chọn (khác A,B,D)
Vậy có 5.8.8.7 = 2240 (số) có 4 chữ số đôi một khác nhau và là số lẻ.
Có bao nhiêu số hạng trong khai triển nhị thức
Có bao nhiêu số hạng trong khai triển nhị thức
?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Xác định số hạng không chứa x trong khai triển
Số hạng không chứa
trong khai triển nhị thức
là:
Số hạng tổng quát trong khai triển nhị thức là:
Số hạng không chứa x khi và chỉ khi
Vậy số hạng không chứa x là: .
Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá
C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. .
Vậy số cách xếp cần tìm. 8!.7.2! = 564480.
Số cách chọn hai học sinh
Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.
Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử
=> Số cách chọn là: (cách)
Tính số hạng tử trong khai triển
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Tìm hệ số của số hạng
Cho
là số tự nhiên thỏa mãn phương trình
. Tìm hệ số của số hạng chứa
trong khai triển nhị thức Niu-tơn của
( với
).
Điều kiện và
.
(Vì
).
Khi đó ta có khai triển: .
Số hạng tổng quát của khai triển là .
Hệ số của số hạng chứa ứng với
thỏa mãn:
.
Vậy hệ số của số hạng chứa là:
.
Tính giá trị biểu thức
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Tìm hệ số của số hạng
Tìm hệ số của
trong khai triển
.
Số hạng tổng quát là: .
Số hạng chứa trong khai triển
là:
nên hệ số là 45.
Số cách đi từ tỉnh A đến tỉnh B
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?
Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.
Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.
Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.
Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: cách
Có tất cả bao nhiêu cách sắp xếp
Có tất cả bao nhiêu cách xếp
quyển sách khác nhau vào một hàng ngang trên giá sách?
Mỗi cách sắp xếp quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của
phần tử. Vậy số cách sáp xếp là
.
Có tất cả có bao nhiêu số hạng có hệ số nguyên dương
Khai triển nhị thức newton của
thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?
Để hệ số nguyên dương thì ,do
nên ta có
vậy t=0,1,2….672 nên có 673 giá trị.
Chọn khai triển đúng
Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Tính số cách chọn chương trình biểu diễn
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Chọn 1 vở kịch có 2 cách
Chọn 1 điệu múa có 3 cách
Chọn 1 bài hát có 6 cách
Có 2.3.6 = 36 cách.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: