Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa học kì 2 Toán 10 Kết nối tri thức (Đề 4)

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Cùng nhau ôn tập, thử sức với đề kiểm tra giữa học kì 2 Toán 10 - Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 2: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là D = [ − 1;  + ∞) ∖ {0}.

  • Câu 3: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình

    Tính tổng tất cả các nghiệm của phương trình \sqrt{6 - 5x} = 2 - x?

    Ta có:

    \sqrt{6 - 5x} = 2 - x

    \Rightarrow \left\{ \begin{matrix}
2 - x \geq 0 \\
6 - 5x = (2 - x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x^{2} + x - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình bằng 1 + ( - 2) = - 1.

  • Câu 4: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Phương trình tham số của đường thẳng đi qua hai điểm C(1; - 1),D(2;5) là:

    Gọi d là đường thẳng qua C và nhận \overrightarrow{u} = \overrightarrow{CD} =
(0;6) làm vectơ chỉ phương.

    Khi đó phương trình tham số của đường thẳng d là: \left\{ \begin{matrix}
x = 2 \\
y = - 1 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 5: Nhận biết

    Tìm hàm số bậc hai

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 7: Thông hiểu

    Chọn đáp án đúng

    Viết phương trình tham số của đường thẳng \Delta có phương trình x - 3y + 2 = 0?

    Đường thẳng \Delta:x - 3y + 2 =
0 đi qua điểm A( - 2;0) và có vectơ pháp tuyến là \overrightarrow{n} =
(1; - 3) nên có vectơ chỉ phương là: \overrightarrow{u} = (3;1).

    Vậy phương trình tham số của \Delta là: \left\{ \begin{matrix}
x = - 2 + 3t \\
y = t \\
\end{matrix} ight..

  • Câu 8: Thông hiểu

    Tính số cách chọn học sinh

    Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?

    Số cách chọn một bạn nam là: 7 cách

    Số cách chọn một bạn nữ là: 4 cách

    Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: 7.4 = 28 cách chọn.

  • Câu 9: Vận dụng cao

    Tìm m để diện tích tam giác đạt max

    Cho đường tròn (C):x^{2} + y^{2} - 2x + 4y - 4 = 0 tâm I và đường thẳng (\Delta):\sqrt{2}x + my + 1 - \sqrt{2} =0 cắt nhau tại hai điểm M;N. Tìm giá trị tham số m để diện tích tam giác MNI có giá trị lớn nhất?

    Hình vẽ minh họa

    Đường tròn (C) tâm I(1; -2) bán kính R = 3

    Diện tích tam giác MNI là:

    S_{MNI} =\frac{1}{2}IM.IN.sin\widehat{MIN} \leq \frac{1}{2}IM.IN

    Suy ra \max S_{MNI} = \frac{1}{2}IM.IN =\frac{9}{2} đạt được khi tam giác MNI vuông cân tại I và AB = IA\sqrt{2} = R\sqrt{2} =3\sqrt{2}

    Mặt khác

    S_{MNI} =\frac{1}{2}.MN.d(I,\Delta)

    \Leftrightarrow \frac{9}{2} =\frac{1}{2}.3\sqrt{2}.d(I,\Delta) \Leftrightarrow d(I,\Delta) =\frac{3}{\sqrt{2}}

    \Leftrightarrow \frac{\left| \sqrt{2}.1+ m.( - 2) + 1 - \sqrt{2} ight|}{\sqrt{2 + m^{2}}} =\frac{3}{\sqrt{2}}

    \Leftrightarrow \frac{|1 - 2m|}{\sqrt{2+ m^{2}}} = \frac{3}{\sqrt{2}}

    \Leftrightarrow 2(1 - 2m)^{2} = 9\left(2 + m^{2} ight)

    \Leftrightarrow (m + 4)^{2} = 0\Leftrightarrow m = - 4

    Vậy m = - 4 thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 11: Vận dụng

    Tìm bảng biến thiên của tam thức bậc hai

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c có đồ thị như hình vẽ dưới đây

    Tìm bảng biến thiên của tam thức bậc hai

    Bảng biến thiên của tam thức bậc hai là

    Từ đồ thị ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3

    => f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án

    Tìm bảng biến thiên của tam thức bậc hai Tìm bảng biến thiên của tam thức bậc hai

    Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án 

    Tìm bảng biến thiên của tam thức bậc hai

    Vậy bảng biến thiên đúng là

    Tìm bảng biến thiên của tam thức bậc hai
  • Câu 12: Thông hiểu

    Chọn nhận xét đúng

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 13: Nhận biết

    Tìm mệnh đề sai

    Chọn mệnh đề sai? Đường thẳng (\Delta) được xác định khi biết

    Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”

  • Câu 14: Thông hiểu

    Xác định tất cả các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số x^{2} + (m - 1)x + m - 2 = 0 có hai nghiệm phân biệt thuộc khoảng ( -
5;5)?

    Ta có:

    PT \Leftrightarrow (x + 1)(x + m - 2) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = - m + 2 \\
\end{matrix} ight.

    Từ yêu cầu bài toán \Leftrightarrow
\left\{ \begin{matrix}
- m + 2 eq - 1 \\
- 5 < - m + 2 < 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 3 \\
- 3 < m < 7 \\
\end{matrix} ight.

    Suy ra m \in \left\{ - 2; - 1;0;1;2;4;5;6
ight\}

    Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 15: Thông hiểu

    Tìm a thỏa mãn điều kiện

    Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?

    *a = 0thì bpt trở thành  − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.

    * a ≠ 0 thì ax^{2} - x + a \geq 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 4a^{2} \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
a \geq \frac{1}{2} \\
a \leq - \frac{1}{2} \\
\end{matrix} ight.\  \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow a \geq \frac{1}{2}.

  • Câu 16: Nhận biết

    Tính số khả năng lựa chọn chủ đề

    Trong một cuốc thi hùng biện, ban tổ chức đã công bố danh sách các chủ đề cho thí sinh gồm 8 chủ đề về lịch sử, 7 chủ đề môi trường, 10 chủ đề về con người và 6 chủ đề về văn hóa. Mỗi thí sinh tham gia thi chỉ được thi với 1 chủ đề. Hỏi mỗi thí sinh có bao nhiêu khả năng lựa chọn chủ đề?

    Số cách chọn chủ đề thi của mỗi thí sinh là: 8 + 7 + 10 + 6 = 31.

  • Câu 17: Nhận biết

    Tìm tọa độ trung điểm I

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 18: Nhận biết

    Chọn đáp án đúng

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

  • Câu 19: Thông hiểu

    Tìm m để hai đường thẳng vuông góc

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 20: Nhận biết

    Tìm tập nghiệm của phương trình

    Phương trình \sqrt{x-1}=x-3 có tập nghiệm là:

     Ta có: \sqrt{x-1}=x-3  \Rightarrow x-1=x^2-6x+9\Leftrightarrow x^2-7x+10=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 5}\end{array}} ight..

    Thử lại x=2 thấy không thỏa mãn. Vậy S=\{5\}.

  • Câu 21: Thông hiểu

    Tìm tập nghiệm S

    Tập nghiệm của phương trình \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0 là:

     Điều kiện x>2.

    Ta có: \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0\Leftrightarrow x^2-5x+4=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 22: Thông hiểu

    Tính số cách chọn 4 học sinh

    Một nhóm gồm 15 học sinh nam trong đó có 5 bạn giỏi Toán và 20 học sinh nữ trong đó có 6 bạn giỏi Văn. Có bao nhiêu cách chọn 4 học sinh sao cho có đúng 1 học sinh nam giỏi môn Toán và 1 học sinh nữ giỏi môn Văn?

    Số cách chọn một học sinh nam giỏi Toán và 1 học sinh nữ giỏi Văn là: C_{5}^{1}.C_{6}^{1} = 30(cách)

    Chọn 2 học sinh còn lại là: C_{26}^{2} (cách)

    Số cách chọn 4 học sinh thỏa mãn là: 30.C_{26}^{2} cách.

  • Câu 23: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số y =
f(x) = x^{3} + \left( m^{2} - 1 ight)x^{2} + 2x + m - 1 là một hàm số lẻ. Biết rằng m = m_{0}. Khẳng định nào dưới đây là khẳng định đúng?

    Tập xác định D\mathbb{= R}

    Với x \in D \Rightarrow - x \in
D

    f( - x) = ( - x)^{3} + \left( m^{2} - 1
ight).( - x)^{2} + 2( - x) + m - 1

    = - x^{3} + \left( m^{2} - 1
ight).x^{2} - 2x + m - 1

    Hàm số đã cho là hàm số lẻ khi đó:

    f( - x) = - f(x),\forall x \in
D

    \Leftrightarrow - x^{3} + \left( m^{2} -
1 ight).x^{2} - 2x + m - 1 = - \left\lbrack x^{3} + \left( m^{2} - 1
ight)x^{2} + 2x + m - 1 ightbrack

    \Leftrightarrow 2\left( m^{2} - 1
ight)x^{2} + 2(m - 1) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy m_{0} = 1 \in \left( \frac{1}{2};3
ight)

    VD

     

    1

  • Câu 24: Nhận biết

    Tìm điểm thuộc đồ thị

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 25: Nhận biết

    Chọn công thức đúng

    Trong mặt phẳng hệ trục tọa độ Oxy, cho đường thẳng d cắt hai trục Ox,Oy lần lượt tại điểm A(a;0),B(0;b) với a eq 0;b eq 0. Khi đó phương trình đường thẳng d là:

    Phương trình đường thẳng d là: \frac{x}{a} + \frac{y}{b} = 1.

  • Câu 26: Thông hiểu

    Tìm điều kiện của tham số m để phương trình có nghiệm

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ: x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}3m - 1 eq 0 \\x = \frac{5m + 1}{3m - 1} > - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq \frac{1}{3} \\\frac{8m}{3m - 1} > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m > \frac{1}{3} \\m < 0 \\\end{matrix} ight..

  • Câu 27: Thông hiểu

    Giải phương trình

    Giá trị của x thoả mãn phương trình A_{x}^{10}+ A_{x}^{9}=9A_{x}^{8} là:

    Điều kiện: x \ge10.

    Thay x=11 vào phương trình, ta được: A_{11}^{10} + A_{11}^9 = 9A_{11}^8 (2 vế bằng nhau). Do đó x=11 là nghiệm của phương trình.

  • Câu 28: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0d_{2}: - x + my + m^{2} - 2m + 1 =
0 cắt nhau?

    \left\{ \begin{matrix}
d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0 \\
d_{2}: - x + my + m^{2} - 2m + 1 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \cap d_{2} =M}{ightarrow}\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}: - 3x + 2y - 1 = 0 \\d_{2}: - x + 1 = 0 \\\end{matrix} ight.\  ightarrow TM \\meq0 ightarrow \frac{m - 3}{- 1}eq\frac{2}{m}\Leftrightarrow \left\{ \begin{matrix}meq1 \\meq2 \\\end{matrix} ight.\  \\\end{matrix} ight.\ .

    Chọn \left\{ \begin{matrix}
m eq 1 \\
m eq 2 \\
\end{matrix} ight..

  • Câu 29: Nhận biết

    Chọn đáp án đúng

    Tính số chỉnh hợp chập 2 của 5 là:

    Số chỉnh hợp chập 2 của 5 là: A_{5}^{2}.

  • Câu 30: Nhận biết

    Tính số cách chọn học sinh

    Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?

    Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.

  • Câu 31: Nhận biết

    Tìm tam thức bậc hai thỏa mãn

    Tam thức nào sau đây nhận giá trị âm với x < 2

    Bảng xét dấu của  − x2 + 5x − 6

  • Câu 32: Thông hiểu

    Có bao nhiêu số tự nhiên được tạo thành

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng (300;500)?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a eq 0)

    Số cần tìm thuộc khoảng (300;500) nên a \in \left\{ 3;4 ight\}=> a có 2 cách chọn.

    Số cách chọn b là 5 cách chọn

    Số cách chọn c là 4 cách chọn

    Vậy có thể lập được 2.5.4 =
40(số) thỏa mãn yêu cầu đề bài.

  • Câu 33: Vận dụng cao

    Viết phương trình đường thẳng BC

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ A(1;2). Biết phương trình đường trung tuyến BM:x + 2y - 2 = 0 và đường cao BH:2x + y = 0. Xác định phương trình tổng quát của đường thẳng BC?

    Tọa độ đỉnh B = BH \cap BM \Rightarrow
B\left( - \frac{2}{3};\frac{4}{3} ight)

    Phương trình đường thẳng AC đi qua điểm A(1;2) và vuông góc với đường thẳng BH là: x - 2y + 3 = 0

    Tọa độ M = AC \cap BM \Rightarrow M\left(
- \frac{1}{2};\frac{5}{4} ight)

    Vì BM là đường trung tuyến nên M là trung điểm cạnh AC suy ra C\left( - 2;\frac{1}{2} ight)

    Ta có: \overrightarrow{BC} = \left( -
\frac{4}{3}; - \frac{5}{6} ight) là VTCP \Rightarrow \overrightarrow{n} = (5; - 8) là VTPT

    Khi đó đường thẳng BC có phương trình là: 5x - 8y + 14 = 0.

    VDC

     

    1

  • Câu 34: Nhận biết

    Tam thức bậc hai dương khi và chỉ khi

    Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi

    f(x) = 2x2 + 2x + 5 = 0 có: \left\{ \begin{matrix}
\Delta' = 1 - 10 = - 9 < 0 \\
a = 2 > 0 \\
\end{matrix} ight. nên f(x) > 0∀x ∈ ℝ.

  • Câu 35: Nhận biết

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất phương trình: 2x^{2}–7x–15≥0 là:

     Ta có: 2x^{2}–7x–15≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le  - \frac{3}{2}}\\{x \ge 5}\end{array}} ight..

    Vậy D=(-\infty ;-\frac{3}{2}]\cup [5;+\infty ).

  • Câu 36: Nhận biết

    Tính khoảng cách từ A đến đường thẳng d

    Trong mặt phẳng Oxy cho điểm A(4; - 5) và đường thẳng (d):3.x - 4y + 8 = 0. Tính khoảng cách từ điểm A đến đường thẳng (d).

    Khoảng cách từ điểm A đến đường thẳng (d) là:

    d\left( A;(d) ight) = \frac{\left| 3.4
- 4.( - 5) + 8 ight|}{\sqrt{3^{2} + 4^{2}}} = 8

    Vậy khoảng cách cần tìm bằng 8.

  • Câu 37: Thông hiểu

    Tính góc giữa hai đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):3x + y - 6 = 0 và đường thẳng \Delta:\left\{ \begin{matrix}
x = - t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Xác định số đo góc giữa hai đường thẳng đã cho?

    Vectơ pháp tuyến của đường thẳng d và \Delta lần lượt là \overrightarrow{n_{d}} =
(3;1);\overrightarrow{n_{\Delta}} = (2; - 1).

    Khi đó góc giữa hai đường thẳng là:

    \cos(d;\Delta) = \frac{\left|
\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}} ight|}{\left|
\overrightarrow{n_{d}} ight|.\left| \overrightarrow{n_{\Delta}}
ight|} = \frac{|3.2 - 1.1|}{\sqrt{3^{2} + 1^{2}}.\sqrt{2^{2} + ( -
1)^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow (d;\Delta) =
45^{0}

    Vậy góc giữa hai đường thẳng là 45^{0}.

  • Câu 38: Thông hiểu

    Tìm các giá trị nguyên của tham số m

    Cho phương trình x^{2} - mx - m^{2} = 0 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -
10;10brack để phương trình đã cho có hai nghiệm trái dấu?

    Từ yêu cầu bài toán

    \Leftrightarrow a.c < 0
\Leftrightarrow - m^{2} < 0 \Leftrightarrow m^{2} > 0
\Leftrightarrow m eq 0

    Suy ra m \in \left\{ - 10;....; - 1
ight\} \cup \left\{ 1;...;10 ight\}

    Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 39: Nhận biết

    Chọn công thức sai

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 40: Vận dụng

    Cửa hàng bán một đôi giày giá bao nhiêu

    Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?

    Gọi y là số tiền lãi của cửa hàng bán giày.

    Ta có y = (120−x)(x−40) =  − x2 + 160x − 4800 =  − (x−80)2 + 1600 ≤ 1600.

    Dấu " = " xảy ra  ⇔ x = 80.

    Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Kết nối tri thức (Đề 4) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo