Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Hàm số (Khó)

Hãy cùng Luyện tập bài Hàm số các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn khẳng định đúng

    Bằng phép tịnh tiến, đồ thị hàm số y = \frac{x}{x - 2} được suy ra từ đồ thị y = \frac{x + 1}{x - 1} như thế nào?

    Hướng dẫn:

    Xét f(x) = \frac{x}{x - 2}, ta có f(x) = \frac{x}{x - 2} = \frac{(x - 1) +
1}{(x - 1) - 1} = f(x - 1).

    Vậy đồ thị hàm số y = \frac{x}{x -
2} được suy ra từ đồ thị hàm số y =
\frac{x + 1}{x - 1} bằng cách tịnh tiến sang phải 1 đơn vị.

  • Câu 2: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hướng dẫn:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 3: Nhận biết
    Tìm tập xác định

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Hướng dẫn:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 4: Vận dụng cao
    Tìm tập xác định

    Tìm tập xác định D của hàm số f(x) = \left\{ \begin{matrix}
\frac{1}{2 - x} & ;x \geq 1 \\
\sqrt{2 - x} & ;x < 1 \\
\end{matrix} ight.\ .

    Hướng dẫn:

    Hàm số xác định khi \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
2 - x eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 1 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 1 \\
x \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x eq 2 \\
\end{matrix} ight.\  \\
x < 1 \\
\end{matrix} ight..

    Vậy xác định của hàm số là D = ℝ ∖ {2}.

  • Câu 5: Thông hiểu
    Tìm tập xác định

    Tập xác định của hàm số y = f(x) = \left\{ \begin{matrix}
\sqrt{- 3x + 8} + x & khi & x < 2 \\
\sqrt{x + 7} + 1 & khi & x \geq 2 \\
\end{matrix} ight.

    Gợi ý:

    Ta lấy hợp của tất cả các khoảng mà hàm số xác định.

    Hướng dẫn:

    Ta có :

    • Khi x < 2: y = f(x) = \sqrt{- 3x + 8} + x xác định khi - 3x + 8 \geq 0 \Leftrightarrow x \leq
\frac{8}{3}.

    Suy ra D1 = (−∞;2).

    • Khi x ≥ 2: y = f(x) = \sqrt{x + 7} + 1 xác định khi x + 7 ≥ 0 ⇔ x ≥  − 7.

    Suy ra D1 = [2;  + ∞).

    Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.

  • Câu 6: Vận dụng cao
    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{2019}{\sqrt[3]{x^{2} - 3x + 2} -
\sqrt[3]{x^{2} - 7}}.

    Hướng dẫn:

    Hàm số xác định khi \sqrt[3]{x^{2} - 3x +
2} - \sqrt[3]{x^{2} - 7} eq 0 \Leftrightarrow \sqrt[3]{x^{2} - 3x + 2}
eq \sqrt[3]{x^{2} - 7}

     ⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.

    Vậy tập xác định của hàm số là D = ℝ ∖ {3}.

  • Câu 7: Nhận biết
    Tìm khẳng định sai

    Khẳng định nào về hàm số y = 3x + 5 là sai?

    Hướng dẫn:

    Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên , suy ra chọn đáp án Hàm số nghịch biến trên .

  • Câu 8: Vận dụng cao
    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = x + \frac{1}{x} trên khoảng (1;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( x_{1} + \frac{1}{x_{1}} ight) - \left( x_{2} +
\frac{1}{x_{2}} ight)

    = \left( x_{1} - x_{2} ight) + \left(
\frac{1}{x_{1}} - \frac{1}{x_{2}} ight) = \left( x_{1} - x_{2}
ight)\left( 1 - \frac{1}{x_{1}x_{2}} ight).

    Với mọi x1x2 ∈ (1;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 1 \\
x_{2} > 1 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x_{1} > 1 \Rightarrow
\frac{1}{x_{1}.x_{1}} < 1.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = 1 - \frac{1}{x_{1}x_{2}} >
0\overset{}{ightarrow}f(x) đồng biến trên (1;+∞).

  • Câu 9: Vận dụng cao
    Chọn khẳng định đúng

    Bằng phép tịnh tiến, từ đồ thị hàm số y =  − 2x2suy ra đồ thị hàm số y =  − 2x2 − 6x + 3 như thế nào?

    Hướng dẫn:

    Xét f(x) = - 2x^{2} - 6x + 3 = - 2\left(
x^{2} + 3x - \frac{3}{2} ight)

    = - 2\left\lbrack \left( x + \frac{3}{2}
ight)^{2} - \frac{15}{4} ightbrack = - 2\left( x + \frac{3}{2}
ight)^{2} + \frac{15}{2}

    Do đó tịnh tiến đồ thị hàm số y =  − 2x2 để được đồ thị hàm số y =  − 2x2 − 6x + 3 ta làm như sau:

    Tịnh tiến liên tiếp đồ thị hàm số y =  − 2x2 đi sang bên trái \frac{3}{2} đơn vị và lên trên đi \frac{15}{2} đơn vị.

  • Câu 10: Vận dụng
    Chọn khẳng định đúng

    Hàm số f(x) có tập xác định và có đồ thị như hình vẽ

     

    Mệnh đề nào sau đây đúng ?

    Hướng dẫn:

    Nhìn vào đồ thị hàm số ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm M(1; 0), N(3; 0) ⇒ MN = 2 . Suy ra Đồ thị hàm số cắt trục hoành theo một dây cung có độ dài bằng 2là đúng.

  • Câu 11: Vận dụng cao
    Chọn khẳng định đúng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = \frac{x - 3}{x + 5} trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( \frac{x_{1} - 3}{x_{1} + 5} ight) - \left(
\frac{x_{2} - 3}{x_{2} + 5} ight)

    = \frac{\left( x_{1} - 3 ight)\left(
x_{2} + 5 ight) - \left( x_{2} - 3 ight)\left( x_{1} + 5
ight)}{\left( x_{1} + 5 ight)\left( x_{2} + 5 ight)} =
\frac{8\left( x_{1} - x_{2} ight)}{\left( x_{1} + 5 ight)\left(
x_{2} + 5 ight)}.

    ● Với mọi x1x2 ∈ (−∞;−5)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < - 5 \\
x_{2} < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 < 0 \\
x_{2} + 5 < 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−∞;−5).

    ● Với mọi x1x2 ∈ (−5;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > - 5 \\
x_{2} > - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 > 0 \\
x_{2} + 5 > 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−5;+∞).

  • Câu 12: Vận dụng
    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = x + \frac{1}{x} trên khoảng (1;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( x_{1} + \frac{1}{x_{1}} ight) - \left( x_{2} +
\frac{1}{x_{2}} ight) = \left( x_{1} - x_{2} ight) + \left(
\frac{1}{x_{1}} - \frac{1}{x_{2}} ight) = \left( x_{1} - x_{2}
ight)\left( 1 - \frac{1}{x_{1}x_{2}} ight).

    Với mọi x1x2 ∈ (1;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 1 \\
x_{2} > 1 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x_{1} > 1 \Rightarrow
\frac{1}{x_{1}.x_{1}} < 1.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = 1 - \frac{1}{x_{1}x_{2}} >
0\overset{}{ightarrow}f(x) đồng biến trên (1;+∞).

  • Câu 13: Thông hiểu
    Tìm m để hàm số đồng biến

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hướng dẫn:

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 14: Thông hiểu
    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{9 - x^{2}}}{x^{2} - 6x + 8}

    Gợi ý:

    Hàm số y = \frac{A(x)}{B(x)} Điều kiện: B(x) ≠ 0.

    Hàm số y = \sqrt[{2k}]{A(x)}\ \left(
k\mathbb{\in N}* ight) \Rightarrow Điều kiện: A(x) ≥ 0.

    Hướng dẫn:

    Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔  − 3 ≤ x ≤ 3.

    Hàm số xác định khi và chỉ khi

    \left\{ \begin{matrix}
9 - x^{2} \geq 0 \\
x^{2} - 6x + 8 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 4 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.. Vậy x ∈ [ − 3; 3] ∖ {2}.

  • Câu 15: Vận dụng
    Chọn khẳng định đúng

    Cho hàm số f(x) =
\sqrt{2x - 7}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    TXĐ : D = \left\lbrack \frac{7}{2}; +
\infty ight) nên ta loại đáp án C và D.

    Xét f\left( x_{1} ight) - f\left( x_{2}
ight) = \sqrt{2x_{1} - 7} - \sqrt{2x_{2} - 7} = \frac{2\left( x_{1} -
x_{2} ight)}{\sqrt{2x_{1} - 7} + \sqrt{2x_{2} - 7}}.

    Với mọi x_{1},\ x_{2} \in \left(
\frac{7}{2}; + \infty ight)x1 < x2, ta có \frac{f\left( x_{1} ight) - f\left(
x_{2} ight)}{x_{1} - x_{2}} = \frac{2}{\sqrt{2x_{1} - 7} +
\sqrt{2x_{2} - 7}} > 0.

    Vậy hàm số đồng biến trên \left(
\frac{7}{2}; + \infty ight).

  • Câu 16: Thông hiểu
    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{3 - x} + \sqrt{x + 1}}{x^{2} - 5x +
6}

    Gợi ý:

    Hàm số y = \frac{A(x)}{B(x)} Điều kiện: B(x) ≠ 0.

    Hàm số y = \sqrt[{2k}]{A(x)}\ \left(
k\mathbb{\in N}* ight) \Rightarrow Điều kiện: A(x) ≥ 0.

    Hướng dẫn:

    Hàm số y = \frac{\sqrt{3 - x} + \sqrt{x +
1}}{x^{2} - 5x + 6} có nghĩa khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 1 \geq 0 \\
x^{2} - 5x + 6 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 \leq x \leq 3 \\
x eq 2;x eq 3 \\
\end{matrix} ight.

     ⇔ x ∈ [ − 1; 3) ∖ {2}.

  • Câu 17: Nhận biết
    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Hướng dẫn:

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 18: Vận dụng
    Chọn khẳng định đúng

    Cho hai đường thẳng \left( d_{1} ight):y = \frac{1}{2}x + 100\left( d_{2} ight):y = - \frac{1}{2}x +
100. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)(d2). Khi đó k_{1} = \frac{1}{2},\ k_{2} = - \frac{1}{2}
\Rightarrow k_{1}.k_{2} = - \frac{1}{4} nên (d1)(d2) không vuông góc nhau.

    Xét hệ: \left\{ \begin{matrix}
y = \frac{1}{2}x + 100 \\
y = - \frac{1}{2}x + 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- \frac{1}{2}x + y = 100 \\
\frac{1}{2}x + y = 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 100 \\
\end{matrix} ight.

    Vậy (d1)(d2) cắt nhau.

    Cách 2: Ta thấy \frac{1}{2} eq -
\frac{1}{2} nên (d1)(d2) cắt nhau.

  • Câu 19: Thông hiểu
    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 20: Nhận biết
    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = \sqrt{x - 1} là:

    Hướng dẫn:

    Hàm số y = \sqrt{x - 1} xác định  ⇔ x − 1 ≥ 0  ⇔ x ≥ 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Kết nối tri thức

Xem thêm