Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa học kì 2 Toán 10 Kết nối tri thức (Đề 1)

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Cùng nhau ôn tập, thử sức với đề kiểm tra giữa học kì 2 Toán 10 - Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Tìm khẳng định đúng

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =3 có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq \frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3\Leftrightarrow t + t + 3 +2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}3 - t \geq 0 \\t(t + 3) = (3 - t)^{2} \\\end{matrix} ight. \left\{ \begin{matrix}t \leq 3 \\t = 1 \\\end{matrix} ight.  ⇔ t = 1(thỏa mãn)

     ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}x = 1 = x_{1} \\x = 2 = x_{2} \\\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 2: Nhận biết

    Tính d(C, ∆)

    Tính khoảng cách từ điểm C( - 1;2) đến đường thẳng (\Delta):4x - 3y + 5 = 0

    Khoảng cách từ điểm C đến đường thẳng (\Delta):4x - 3y + 5 = 0 là:

    d(C;\Delta) = \frac{\left| 4.( - 1) -
3.2 + 5 ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 3: Vận dụng cao

    Tính số đỉnh của đa giác

    Cho đa giác đều gồm n đỉnh với n\in \mathbb{N}^{*},n > 4. Số tam giác tạo thành từ 3 đỉnh của đa giác nhưng không có cạnh nào trùng với cạnh của đa giác gấp 5 lần số tam giác tạo thành từ 3 đỉnh của đa giác nhưng có đúng 1 cạnh trùng với 1 cạnh của đa giác. Hỏi đa giác có bao nhiêu đỉnh?

    Số tam giác tạo thành từ 3 đỉnh của đa giác là C_{n}^{3} (tam giác)

    Số tam giác tạo thành có đúng hai cạnh trùng với hai cạnh của đa giác là n (tam giác).

    Số tam giác tạo thành có đúng một cạnh là cạnh của đa giác là: n(n - 4)

    Số tam giác tạo thành không có cạnh nào là cạnh của đa giác là:

    C_{n}^{3} - n - n(n - 4) = C_{n}^{3} -n^{2} + 3n

    Theo giả thiết ta có:

    C_{n}^{3} - n^{2} + 3n = 5n(n -4)

    \Leftrightarrow \frac{n!}{3!(n - 3)!} -n^{2} + 3n = 5n(n - 4)

    \Leftrightarrow n^{2} - 39n + 140 = 0\Leftrightarrow \left\lbrack \begin{matrix}n = 35(tm) \\n = 4(ktm) \\\end{matrix} ight.

    Vậy đa giác có 35 đỉnh.

  • Câu 4: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x) < 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
a < 0 \\
\end{matrix} ight.\  \Leftrightarrow (m + 2)^{2} + 8(m - 4) < 0
\Leftrightarrow m^{2} + 12m - 28 < 0 \Leftrightarrow - 14 < m <
2.

  • Câu 5: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.

    Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).

    Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1

     ⇔ (1)2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
m^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m = \pm 2 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 6: Nhận biết

    Tìm x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = \sqrt{x + 2} + \sqrt{2 - x} là:

    Điều kiện xác định của hàm số y = \sqrt{x
+ 2} + \sqrt{2 - x} là:

    \left\{ \begin{matrix}
x + 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 2 \leq x \leq 2

    Vậy tập xác định của hàm số đã cho là D =
\lbrack - 2;2brack

  • Câu 7: Nhận biết

    Chọn khẳng định đúng

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c;(a eq 0). Khẳng định nào sau đây đúng?

    Ta có: f(x) > 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta < 0 \\
\end{matrix} ight.

  • Câu 8: Vận dụng

    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = \frac{mx}{\left( 2m^{2} + 1 ight)x^{2} - 4mx
+ 2} là:

    ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.

    Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.

    Ta có a = 2m2 + 1 > 0,  Δ′ = 4m2 − 2(2m2+1) =  − 2 < 0.

    Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0  ∀x ∈ ℝ.

    Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0,  ∀x ∈ ℝ.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 9: Nhận biết

    Tam thức bậc hai dương khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).

  • Câu 10: Thông hiểu

    Xác định hàm số tương ứng với đồ thị

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 11: Nhận biết

    Tổng tất cả các nghiệm của phương trình

    Tổng tất cả các nghiệm của phương trình \sqrt{x^{2} + 3x - 2} = \sqrt{1 +
x} bằng:

    \sqrt{x^{2} + 3x - 2} = \sqrt{1 + x}
\Leftrightarrow \left\{ \begin{matrix}
1 + x \geq 0 \\
x^{2} + 3x - 2 = 1 + x \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x^{2} + 2x - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Phương trình chỉ có nghiệm x = 1 nên tổng các nghiệm bằng 1.

  • Câu 12: Nhận biết

    Giải bất phương trình

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 13: Thông hiểu

    Xác định tọa độ điểm D

    Trong mặt phẳng hệ trục tọa độ Oxy cho các tọa độ các điểm A(3; - 5),B( - 1;2)G(2; - 2). Xác định tọa độ điểm D sao cho G là trọng tâm tam giác ABD?

    Xét tam giác ABD có G là trọng tâm khi đó ta có:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{D}}{3} \\y_{G} = \dfrac{y_{A} + y_{B} + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{3 - 1 + x_{D}}{3} \\- 2 = \dfrac{- 5 + 2 + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{D} = 4 \\y_{D} = - 3 \\\end{matrix} ight.

    Vậy tọa độ điểm D(4; - 3).

  • Câu 14: Thông hiểu

    Tính số mã OTP được tạo thành

    Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?

    Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9

    => Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn

    => Số mã xác thực có thể tạo thành là: 10^{6} = 1000000 mã.

  • Câu 15: Nhận biết

    Tìm điểm thuộc đường thẳng

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 16: Nhận biết

    Chọn kết luận đúng

    Giả sử một công việc phải hoàn thành qua 2 giai đoạn:

    Giai đoạn 1 có a cách thực hiện.

    Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.

    Khi đó số cách thực hiện công việc là:

    Áp dụng quy tắc nhân ta có số cách thực hiện công việc là a.b cách.

  • Câu 17: Nhận biết

    Tìm x thỏa mãn

    Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

    f(x) = 5x - x^{2} - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].

  • Câu 18: Thông hiểu

    Chọn kết quả chính xác

    Cho tập hợp B =
\left\{ 0,1,2,3,4,5,6,7 ight\}. Có bao nhiêu số tự nhiên không chia hết cho 2 gồm 5 chữ số khác nhau được lập từ tập hợp B?

    Gọi số tự nhiên có năm chữ số cần tìm có dạng \overline{abcde};(a eq 0)

    Số cách chọn e là: 4 cách

    Số cách chọn a là: 4 cách

    Số cách chọn b là: 6 cách

    Số cách chọn c là: 5 cách

    Số cách chọn d là: 4 cách

    Vậy số các số được tạo thành là: 4.6.6.5.4 = 2880 số.

  • Câu 19: Vận dụng cao

    Tìm khẳng định đúng

    Biết phương trình (x + 5)(2 - x) = 3\sqrt{x^{2} + 3x}có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?

    Điều kiện:

    x2 + 3x ≥ 0⇔ \left\lbrack \begin{matrix}
x \leq - 3 \\
x \geq 0 \\
\end{matrix} ight.\ (1)

    phương trình \Leftrightarrow x^{2} + 3x +
3\sqrt{x^{2} + 3x} - 10 = 0.

    Đặt t = \sqrt{x^{2} + 3x}, điều kiện t ≥ 0.

    Phương trình trở thành t2 + 3t − 10 = 0

    \left\lbrack \begin{matrix}
t = 2(TM) \\
t = - 5(KTM) \\
\end{matrix} ight. \sqrt{x^{2} + 3x} = 2 \Leftrightarrow x^{2} + 3x -
4 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 = x_{2} \\
x = - 4 = x_{1} \\
\end{matrix} ight., thoả mãn (1) ⇒ x1 + 4x2 = 0.

  • Câu 20: Thông hiểu

    Tính khoảng cách từ E đến đường thẳng ∆

    Gọi E là tọa độ giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0. Tính khoảng cách từ E đến đường thẳng (\Delta):3x + y + 4 = 0

    Vì E là giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0 nên tọa độ điểm E là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.

    Khi đó khoảng cách từ điểm E đến đường thẳng (\Delta):3x + y + 4 = 0 là:

    d(E;\Delta) = \frac{\left| 3.( - 1) + 1
+ 4 ight|}{\sqrt{3^{2} + 1^{2}}} = \frac{\sqrt{10}}{5}

    Vậy khoảng cách cần tìm bằng \frac{\sqrt{10}}{5}.

  • Câu 21: Nhận biết

    Chọn công thức đúng

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 22: Thông hiểu

    Xác định hệ thức liên hệ giữa x và y

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 23: Thông hiểu

    Tính góc tạo bởi hai đường thẳng

    Tính góc tạo bởi hai đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0(\Delta'):x - \sqrt{3}y - 1 = 0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left( \sqrt{3}; - 1
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta'):x - \sqrt{3}y - 1 = 0 là: \overrightarrow{n_{\Delta'}} = \left( 1;
- \sqrt{3} ight)

    Ta thấy

    \cos(\Delta;\Delta') = \frac{\left|
\overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta'}}
ight|}{\left| \overrightarrow{n_{\Delta}} ight|.\left|
\overrightarrow{n_{\Delta'}} ight|}

    = \frac{\left| \sqrt{3}.1 + ( -
1).\left( - \sqrt{3} ight) ight|}{\sqrt{\left( \sqrt{3} ight)^{2}
+ ( - 1)^{2}}.\sqrt{1^{2} + \left( - \sqrt{3} ight)^{2}}} =
\frac{\sqrt{3}}{2}

    \Rightarrow
\widehat{(\Delta;\Delta')} = 30^{0}

    Vậy góc tạo bởi hai đường thẳng đã cho bằng 30^{0}.

  • Câu 24: Nhận biết

    Tìm tọa độ vectơ

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 25: Thông hiểu

    Tìm giá trị của tham số m thỏa mãn yêu cầu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 26: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 27: Thông hiểu

    Xác định m để hai đường thẳng vuông góc

    Với giá trị nào của tham số m thì đường thẳng \left( d_{1} ight):x + 2y + 1 - m = 0 vuông góc với đường thẳng \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0?

    Ta có tọa độ vectơ pháp tuyến của \left(
d_{1} ight):x + 2y + 1 - m = 0 là: \overrightarrow{n_{1}} = (1;2)

    Tọa độ vectơ pháp tuyến của \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0 là: \overrightarrow{n_{2}} = (m + 4;2)

    Để \left( d_{1} ight)\bot\left( d_{2}
ight) thì \overrightarrow{n_{1}}.\overrightarrow{n_{1}} = 0
\Leftrightarrow 1(m + 4) + 2.2 = 0 \Leftrightarrow m = - 8

    Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.

  • Câu 28: Nhận biết

    Chọn công thức đúng

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Giả sử \alpha là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?

    Góc giữa hai đường thẳng (\Delta):a_{1}x
+ b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 xác định bởi công thức:

    \cos\alpha = \frac{\left| a_{1}a_{2} +
b_{1}b_{2} ight|}{\sqrt{{a_{1}}^{2} + {b_{1}}^{2}}.\sqrt{{a_{2}}^{2} +
{b_{2}}^{2}}}

  • Câu 29: Thông hiểu

    Chọn nhận xét đúng

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 30: Nhận biết

    Tìm vectơ pháp tuyến của đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

  • Câu 31: Thông hiểu

    Tìm k

    Nếu C_{n}^{k}=10A_{n}^{k}=60. Thì k bằng:

     Ta có: \left\{ {\begin{array}{*{20}{c}}{C_n^k = 10}\\{A_n^k = 60}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{n!}}{{k!(n - k)!}} = 10}\\{\frac{{n!}}{{(n - k)!}} = 60}\end{array}} ight.} ight.\Leftrightarrow k! = 6 \Leftrightarrow k = 3.

  • Câu 32: Nhận biết

    Xác định hàm số bậc hai

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 33: Vận dụng cao

    Tính giá trị nhỏ nhất của biểu thức

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A( - 1;5),B(5;3) và đường thẳng (\Delta):3x + 4y - 12 = 0. Lấy một điểm H bất kì trên đường thẳng (\Delta). Khi đó biểu thức \left| \overrightarrow{HA} + \overrightarrow{HB}ight| đạt giá trị nhỏ nhất bằng:

    Gọi I là trung điểm của AB khi đó I(2; 4)

    Ta có:

    \left| \overrightarrow{HA} +\overrightarrow{HB} ight| = \left| \overrightarrow{HI} +\overrightarrow{IA} + \overrightarrow{HI} + \overrightarrow{IB}ight|

    = \left| 2\overrightarrow{HI} + \left(\overrightarrow{IA} + \overrightarrow{IB} ight) ight| =2HI

    Nên \left| \overrightarrow{HA} +\overrightarrow{HB} ight|_{\min} khi HI_{\min}khi và chỉ khi H là hình chiếu vuông góc của I lên đường thẳng (\Delta)

    Khi đó: HI = d(I;\Delta) = \frac{|3.2 +4.4 - 12|}{\sqrt{3^{3} + 4^{2}}} = 2

    Vậy biểu thức \left| \overrightarrow{HA}+ \overrightarrow{HB} ight| đạt giá trị nhỏ nhất bằng 2.

  • Câu 34: Vận dụng

    Tính tổng bình phương các nghiệm của phương trình

    Tính tổng bình phương các nghiệm của phương trình: \sqrt{x + 2} + \sqrt{5 - x} + \sqrt{(x+ 2)(5 - x)} = 4 là:

    ĐK x ∈ [ − 2; 5] Đặt t = \sqrt{x + 2} + \sqrt{5 - x} ,t ≥ 0.

    \Rightarrow \sqrt{(x + 2)(5 - x)} =\frac{t^{2} - 7}{2}

    Phương trình trở thành t + \frac{t^{2} -7}{2} = 4 \Leftrightarrow t^{2} + 2t- 15 = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 3(TM) \\t = - 5(KTM) \\\end{matrix} ight.

    \Rightarrow - x^{2} + 3x + 10 = 9\Leftrightarrow \left\lbrack \begin{matrix}x = \frac{3 + \sqrt{13}}{2} = x_{1}(TM) \\x = \frac{3 - \sqrt{13}}{2} = x_{2}(TM) \\\end{matrix} ight.  ⇒ x12 + x22 = 11.

  • Câu 35: Nhận biết

    Chọn đáp án đúng

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 36: Thông hiểu

    Viết phương trình đường thẳng

    Cho đường thẳng (\Delta):\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và điểm A( - 1;6). Viết phương trình đường thẳng qua điểm A và vuông góc với (\Delta)?

    Một vectơ chỉ phương của (\Delta) là: \overrightarrow{u} = (3;1)

    Vậy phương trình đường thẳng đi qua A( -
1;6) và vuông góc với (\Delta) là:

    3(x + 1) + 1(y - 6) = 0

    \Leftrightarrow 3x + y - 3 =
0

    Vậy phương trình cần tìm là 3x + y - 3 =
0.

  • Câu 37: Nhận biết

    Xác định phương trình chính tắc

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 38: Thông hiểu

    Viết phương trình đường cao AH

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh A(1; - 2),B(3;4),C( - 1;5). Viết phương trình đường cao AH của tam giác ABC?

    Ta có: AH\bot BC nên đường cao AH là một vectơ pháp tuyến là \overrightarrow{BC} = ( - 4;1)

    Phương trình đường cao AH là:

    - 4(x - 1) + 1(y + 2) = 0

    \Leftrightarrow - 4x + y + 6 =
0.

    Vậy đường thẳng cần tìm có phương trình - 4x + y + 6 =
0.

  • Câu 39: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 40: Vận dụng

    Tính giá trị biểu thức S

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Kết nối tri thức (Đề 1) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo