Giải bất phương trình
Giải bất phương trình
Ta có: .
Cùng nhau ôn tập, thử sức với đề kiểm tra giữa học kì 2 Toán 10 - Kết nối tri thức nha!
Giải bất phương trình
Giải bất phương trình
Ta có: .
Tính giá trị nhỏ nhất của biểu thức
Trong mặt phẳng tọa độ , cho tọa độ hai điểm
và đường thẳng
. Lấy một điểm
bất kì trên đường thẳng
. Khi đó biểu thức
đạt giá trị nhỏ nhất bằng:
Gọi I là trung điểm của AB khi đó I(2; 4)
Ta có:
Nên khi
khi và chỉ khi H là hình chiếu vuông góc của I lên đường thẳng
Khi đó:
Vậy biểu thức đạt giá trị nhỏ nhất bằng 2.
Tìm khẳng định đúng
Biết phương trình có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Tổng tất cả các nghiệm của phương trình
Tổng tất cả các nghiệm của phương trình bằng:
.
Phương trình chỉ có nghiệm nên tổng các nghiệm bằng
.
Tìm x thỏa mãn
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Xác định m để hai đường thẳng vuông góc
Với giá trị nào của tham số thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Chọn công thức đúng
Trong mặt phẳng tọa độ , cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức:
Tính góc tạo bởi hai đường thẳng
Tính góc tạo bởi hai đường thẳng và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Vậy góc tạo bởi hai đường thẳng đã cho bằng .
Viết phương trình đường thẳng
Cho đường thẳng và điểm
. Viết phương trình đường thẳng qua điểm
và vuông góc với
?
Một vectơ chỉ phương của là:
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Vậy phương trình cần tìm là .
Tìm tất cả các giá trị thực của tham số m
Cho hàm số . Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Tính tổng bình phương các nghiệm của phương trình
Tính tổng bình phương các nghiệm của phương trình: là:
ĐK x ∈ [ − 2; 5] Đặt ,t ≥ 0.
Phương trình trở thành
⇒ x12 + x22 = 11.
Tính số đỉnh của đa giác
Cho đa giác đều gồm đỉnh với
. Số tam giác tạo thành từ 3 đỉnh của đa giác nhưng không có cạnh nào trùng với cạnh của đa giác gấp 5 lần số tam giác tạo thành từ 3 đỉnh của đa giác nhưng có đúng 1 cạnh trùng với 1 cạnh của đa giác. Hỏi đa giác có bao nhiêu đỉnh?
Số tam giác tạo thành từ 3 đỉnh của đa giác là (tam giác)
Số tam giác tạo thành có đúng hai cạnh trùng với hai cạnh của đa giác là n (tam giác).
Số tam giác tạo thành có đúng một cạnh là cạnh của đa giác là:
Số tam giác tạo thành không có cạnh nào là cạnh của đa giác là:
Theo giả thiết ta có:
Vậy đa giác có 35 đỉnh.
Chọn khẳng định đúng
Cho tam thức bậc hai . Khẳng định nào sau đây đúng?
Ta có:
Tính khoảng cách từ E đến đường thẳng ∆
Gọi là tọa độ giao điểm hai đường thẳng
và
. Tính khoảng cách từ
đến đường thẳng
Vì E là giao điểm hai đường thẳng và
nên tọa độ điểm E là nghiệm của hệ phương trình:
Khi đó khoảng cách từ điểm E đến đường thẳng là:
Vậy khoảng cách cần tìm bằng .
Tìm điểm thuộc đường thẳng
Cho đường thẳng . Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Tính số mã OTP được tạo thành
Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?
Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9
=> Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn
=> Số mã xác thực có thể tạo thành là: mã.
Chọn kết luận đúng
Giả sử một công việc phải hoàn thành qua 2 giai đoạn:
Giai đoạn 1 có a cách thực hiện.
Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.
Khi đó số cách thực hiện công việc là:
Áp dụng quy tắc nhân ta có số cách thực hiện công việc là cách.
Xác định phương trình chính tắc
Phương trình nào dưới đây đi qua hai điểm là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Tìm m thỏa mãn điều kiện
Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.
Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).
Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1
⇔ (1) có 2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1
.
Tính giá trị biểu thức S
Trong mặt phẳng với hệ tọa độ , cho tam giác
có phương trình cạnh
là
, phương trình cạnh
là
. Biết trọng tâm của tam giác là điểm
và phương trình đường thẳng
có dạng
. Tính giá trị biểu thức
.
Tọa độ điểm A là nghiệm của hệ phương trình
Ta có
Gọi là trung điểm của BC thì
nên
Mặt khác
Suy ra một vectơ pháp tuyến của BC là
Suy ra phương trình đường thẳng BC là
Suy ra
Chọn công thức đúng
Cho tập hợp gồm
phần tử. Số các tổ hợp chập
của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
Số các tổ hợp chập của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
.
Tìm m thỏa mãn điều kiện
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có .
Chọn nhận xét đúng
Quan sát đồ thị hàm số, chọn nhận xét đúng?
Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0
Parabol cắt trục tung tại điểm có tọa độ nằm phía trên trục hoành nên
.
Đỉnh parabol nằm bên trái trục tung nên có hoành độ mà
suy ra
.
Kết luận: .
Tìm x để hàm số có nghĩa
Tìm tập xác định của hàm số là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là
Tìm tọa độ vectơ
Trong hệ trục tọa độ , tọa độ của vectơ
là:
Tọa độ vectơ .
Xác định tọa độ điểm D
Trong mặt phẳng hệ trục tọa độ cho các tọa độ các điểm
và
. Xác định tọa độ điểm
sao cho
là trọng tâm tam giác
?
Xét tam giác ABD có G là trọng tâm khi đó ta có:
Vậy tọa độ điểm .
Xác định hệ thức liên hệ giữa x và y
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Tìm vectơ pháp tuyến của đường thẳng
Trong mặt phẳng tọa độ , cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Tìm số nghiệm của phương trình
Phương trình có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Tìm giá trị của tham số m thỏa mãn yêu cầu
Trong mặt phẳng tọa độ Oxy, cho ba điểm với m là tham số. Tìm giá trị của tham số m để ba điểm
thẳng hàng?
Ta có:
Ba điểm A, B, C thẳng hàng khi và chỉ khi cùng phương với nhau.
Điều đó xảy ra khi và chỉ khi
Vậy m = 0 thì ba điểm A, B, C thẳng hàng.
Chọn kết quả chính xác
Cho tập hợp . Có bao nhiêu số tự nhiên không chia hết cho 2 gồm 5 chữ số khác nhau được lập từ tập hợp
?
Gọi số tự nhiên có năm chữ số cần tìm có dạng
Số cách chọn e là: 4 cách
Số cách chọn a là: 4 cách
Số cách chọn b là: 6 cách
Số cách chọn c là: 5 cách
Số cách chọn d là: 4 cách
Vậy số các số được tạo thành là: số.
Viết phương trình đường cao AH
Trong mặt phẳng tọa độ Oxy, cho tam giác có tọa độ các đỉnh
. Viết phương trình đường cao
của tam giác
?
Ta có: nên đường cao AH là một vectơ pháp tuyến là
Phương trình đường cao là:
.
Vậy đường thẳng cần tìm có phương trình .
Tìm k
Nếu và
. Thì
bằng:
Ta có: .
Tìm khẳng định đúng
Biết phương trình có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?
Điều kiện:
x2 + 3x ≥ 0⇔
phương trình .
Đặt , điều kiện t ≥ 0.
Phương trình trở thành t2 + 3t − 10 = 0
⇔ ⇒
, thoả mãn (1) ⇒ x1 + 4x2 = 0.
Tìm tập xác định của hàm số
Tập xác định của hàm số là:
ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.
Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.
Ta có a = 2m2 + 1 > 0, Δ′ = 4m2 − 2(2m2+1) = − 2 < 0.
Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0 ∀x ∈ ℝ.
Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Tam thức bậc hai dương khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Chọn đáp án đúng
Đường thẳng nào sau đây song song với đường thẳng ?
Đường thẳng song song với đường thẳng
vì
.
Xác định hàm số bậc hai
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Tính d(C, ∆)
Tính khoảng cách từ điểm đến đường thẳng
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Xác định hàm số tương ứng với đồ thị
Quan sát đồ thị hàm số sau:
Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: