Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Hãy cùng Luyện tập bài Hàm số bậc hai các em nhé!
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?
Xét đáp án , ta có
nên
và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Cho hàm số xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng
Đặt .
Hoành độ đỉnh của đồ thị hàm số là .
Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên .
Suy ra, hàm số nghịch biến [ − 1; 1].
.
.
Theo đề bài ta có: y1 − y2 = 8
⇔ m2 − 2m + 1 = 0 ⇔ m = 1.
Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng . Tính tích P = ab.
Vì (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng nên ta có hệ
(thỏa mãn a > 1) hoặc
(loại).
Suy ra P = ab = 16.12 = 192.
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Biết rằng hàm số y = ax2 + bx + c (a≠0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A(0;6). Tính tích P = abc.
Nhận xét: Hàm số đi qua điểm A(0;6); đạt cực tiểu bằng 4 tại x = 2 nên đồ thị hàm số đi qua I(2;4) và nhận x = 2 làm trục đối xứng, hàm số cũng đi qua điểm A(0;6) suy ra:
.
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)
Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt ⇔ Δ = 4 − m > 0 ⇔ m < 4.
Theo giả thiết
TH1:
TH2: : không thỏa mãn (*).
Do đó (P) Chọn A.
Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.
Hoành độ đỉnh của (P) là .
Suy ra tung độ đỉnh y = − 4m − 2. Do đó tọa độ đỉnh của (P) là I(1;−4m−2).
Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên − 4m − 2 = 3.1 − 1 ⇔ m = − 1.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng − 3.
Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.
Theo giả thiết 2m + 3 = − 3 ⇔ m = − 3.
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Hàm số y = − x2 + 2(m−1)x + 3 nghịch biến trên (1;+∞) khi giá trị m thỏa mãn:
Đồ thị hàm số có trục đối xứng là đường x = m − 1. Đồ thị hàm số đã cho có hệ số x2 âm nên sẽ đồng biến trên (−∞;m−1) và nghịch biến trên (m−1;+∞). Theo đề, cần: m − 1 ≤ 1 ⇔ m ≤ 2.
Cho parabol (P) : y = ax2 + bx + c, (a≠0) có đồ thị như hình bên. Khi đó 2a + b + 2c có giá trị là

Parabol (P) : y = ax2 + bx + c, (a≠0) đi qua các điểm A(−1; 0), B(1; −4), C(3; 0) nên có hệ phương trình:
.
Khi đó: 2a + b + 2c = 2.1 − 2 + 2(−3) = − 6.
Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.
Vì (P) có hoành độ đỉnh bằng − 3 và đi qua M(−2;1) nên ta có hệ
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).
Trục đối xứng
Do
Vậy (P) : y = 2x2 + 4x.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: