Tính góc tạo bởi hai đường thẳng
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Đề kiểm tra 15 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tính góc tạo bởi hai đường thẳng
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Tìm đường chuẩn của hypebol
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Tìm điểm thỏa mãn
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và
. Tìm điểm
thuộc trục tung sao cho diện tích tam giác
bằng ![]()
Ta có
Xác định vị trí tương đối của hai đường thẳng
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Tìm phương trình đường tròn
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Tìm a để hai đường thẳng vuông góc
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Viết phương trình chính tắc của (P)
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Tìm bán kính đường tròn nội tiếp
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .
Tìm đường chuẩn của Parabol
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Xét vị trí tương đối của hai đường thẳng
Xét vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Chọn công thức đúng
Trong mặt phẳng hệ trục tọa độ
, cho đường thẳng
cắt hai trục
lần lượt tại điểm
với
. Khi đó phương trình đường thẳng
là:
Phương trình đường thẳng d là: .
Chọn đáp án đúng
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Tìm hệ số góc k của đường thẳng
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Viết phương trình tổng quát
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy
Tìm vectơ pháp tuyến của đường thẳng
Trong mặt phẳng tọa độ
, cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Viết phương trình tiếp tuyến của đường tròn
Cho phương trình đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Tìm phương trình đường tròn
Đường tròn
có tâm
thuộc đường thẳng
và tiếp xúc với hai trục tọa độ có phương trình là:
Vậy phương trình các đường tròn là :
hoặc
Tìm điều kiện chính xác
Cho phương trình
. Điều kiện của
để phương trình đã cho là phương trình đường tròn là
Điều kiện: .
Viết phương trình chính tắc của Hypebol
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là
và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Viết phương trình đường cao AH
Trong mặt phẳng tọa độ Oxy, cho tam giác
có tọa độ các đỉnh
. Viết phương trình đường cao
của tam giác
?
Ta có: nên đường cao AH là một vectơ pháp tuyến là
Phương trình đường cao là:
.
Vậy đường thẳng cần tìm có phương trình .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: