Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Nhị thức Newton (Dễ)

Cùng luyện tập bài Nhị thức Newton các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Có bao nhiêu số hạng trong khai triển nhị thức

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Hướng dẫn:

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 2: Nhận biết
    Số số hạng trong khai triển là

    Số số hạng trong khai triển (x + 2)^{50} là:

    Hướng dẫn:

    Số số hạng trong khai triển là: n + 1 =
50 + 1 = 51.

  • Câu 3: Vận dụng
    Có tất cả có bao nhiêu số hạng có hệ số nguyên dương

    Khai triển nhị thức newton của P(x) = (\sqrt[3]{2}x + 3)^{2018} thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?

    Hướng dẫn:

    P(x) = (\sqrt[3]{2}x + 3)^{2018} =
\sum_{k = 0}^{2018}{\left( \sqrt[3]{2}x ight)^{2018 - k}3^{k}} =
\sum_{k = 0}^{2018}{2^{\frac{2018 - k}{3}}.3^{k}x^{2018 -
k}}

    Để hệ số nguyên dương thì (2018 - k)
\vdots 3 \Leftrightarrow 2018 - k = 3t \Leftrightarrow k = 2018 -
3t,do 0 \leq k \leq 2018 nên ta có 0 \leq 2018 - 3t \leq 2018
\Leftrightarrow 0 \leq t \leq \frac{2018}{3} \approx 672,6 vậy t=0,1,2….672 nên có 673 giá trị.

  • Câu 4: Vận dụng
    Có bao nhiêu số hạng hữu tỉ trong khai triển trên?

    Khai triển (\sqrt{5} - \sqrt[4]{7})^{124}. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?

    Hướng dẫn:

    Ta có (\sqrt{5} - \sqrt[4]{7})^{124} =
\sum_{k = 0}^{124}{C_{124}^{k}.( - 1)^{k}.5^{\frac{124 -
k}{2}}.7^{\frac{k}{4}}}

    Số hạng hữu tỉ trong khai triển tương ứng với \left\{ \begin{matrix}
\frac{124 - k}{2}\mathbb{\in Z} \\
\frac{k}{4}\mathbb{\in Z} \\
\end{matrix} ight.\  \Leftrightarrow k \in \left\{ 0;4;8;12;...;124
ight\}.

    Vậy số các giá trị k là: \frac{124 - 0}{4} + 1 = 32.

  • Câu 5: Nhận biết
    Tìm hệ số của số hạng

    Hệ số của x^{31} trong khai triển \left( x + \frac{1}{x^{2}} ight)^{40}(x eq
0) là:

    Hướng dẫn:

    \left( x + \frac{1}{x^{2}} ight)^{40}
= \sum_{k = 0}^{40}{C_{40}^{k}x^{40 - k}.x^{- 2k}} = \sum_{k =
0}^{40}{C_{40}^{k}x^{40 - 3k}}

    Theo giả thiết: 40 - 3k = 31 \Rightarrow
k = 3.

    Vậy hệ số của x^{31}C_{40}^{3} = 9880.

  • Câu 6: Thông hiểu
    Tổng các hệ số của đa thức là

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Hướng dẫn:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 7: Vận dụng
    Tìm hệ số lớn nhất

    Cho khai triển (1
+ 3x)^{n} = a_{0} + a_{1}x^{1} + ... + a_{n}x^{n} trong đó n\mathbb{\in N}* và các hệ số thỏa mãn hệ thức a_{0} + \frac{a_{1}}{3} + ... +
\frac{a_{n}}{3^{n}} = 4096. Hệ số lớn nhất là:

    Hướng dẫn:

    Xét khai triển (1 + 3x)^{n} = a_{0} +
a_{1}x^{1} + ... + a_{n}x^{n}.

    Cho x = \frac{1}{3} ta được \left( 1 + 3.\frac{1}{3} ight)^{n} = a_{0}
+ \frac{a_{1}}{3^{1}} + ... + \frac{a_{n}}{3^{n}} \Rightarrow 2^{n} =
4096 \Leftrightarrow n = 12.

    Khi đó (1 + 3x)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}.3^{k}.x^{k}}.

    Ta có hệ số a_{k} = 3^{k}C_{12}^{k} =
3^{k}.\frac{12!}{k!.(12 - k)!}

    Hệ số a_{k} lớn nhất nên \left\{ \begin{matrix}
a_{k} \geq a_{k - 1} \\
a_{k} \geq a_{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k - 1}.\frac{12!}{(k - 1)!.(12 -
k + 1)!} \\
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k + 1}.\frac{12!}{(k + 1)!.(12 -
k - 1)!} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{3}{k} \geq \frac{1}{13 - k} \\
\frac{1}{12 - k} \geq \frac{3}{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
39 - 3k \geq k \\
k + 1 \geq 36 - 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k \leq \frac{39}{4} \\
k \geq \frac{35}{4} \\
\end{matrix} ight.

    k\mathbb{\in N} nên nhận k = 9.

    Vậy hệ số lớn nhất a_{9} =
3^{9}.C_{12}^{9} = 4330260..

  • Câu 8: Vận dụng
    Có bao nhiêu số hạng là số nguyên trong khai triển

    Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \left( \sqrt[3]{3} +
\sqrt[5]{5} ight)^{2019}?

    Hướng dẫn:

    Ta có \left( \sqrt[3]{3} + \sqrt[5]{5}
ight)^{2019} = \sum_{k = 0}^{2019}{C_{2019}^{k}.\left( \sqrt[3]{3}
ight)^{2019 - k}.\left( \sqrt[5]{5} ight)^{k}} = \sum_{k =
0}^{2019}{C_{2019}^{k}.3^{\frac{2019 -
k}{3}}.5^{\frac{k}{5}}}.

    Để trong khai triển có số hạng là số nguyên thì \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
\frac{2019 - k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
673 - \frac{k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
k \vdots 15 \\
\end{matrix} ight..

    Ta có k \vdots 15 \Rightarrow k =
15m0 \leq k \leq 2019
\Leftrightarrow 0 \leq 15m \leq 2019 \Leftrightarrow 0 \leq m \leq
134,6. Suy ra có 135 số hạng là số nguyên trong khai triển của biểu thức.

  • Câu 9: Thông hiểu
    Tìm hệ số lớn nhất trong khai triển

    Hệ số lớn nhất trong khai triển \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4}là:

    Hướng dẫn:

    Ta có \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4} = \sum_{k = 0}^{4}{C_{4}^{k}.\left( \frac{1}{4} ight)^{4 -
k}.\left( \frac{3}{4} ight)^{k}}

    = \frac{1}{256} + \frac{3}{64}x +
\frac{27}{128}x^{2} + \frac{27}{64}x^{3} +
\frac{81}{256}x^{4}

    Vậy hệ số lớn nhất trong khai triển là \frac{27}{64}.

  • Câu 10: Thông hiểu
    Tổng các hệ số của đa thức là

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Hướng dẫn:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 11: Nhận biết
    Viết khai triển theo công thức nhị thức Niu-tơn

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Hướng dẫn:

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 12: Nhận biết
    Số số hạng trong khai triển là

    Khai triển nhị thức Niu-tơn của (3 - 2x)^{2019} có bao nhiêu số hạng?

    Hướng dẫn:

    Ta có: Khai triển nhị thức Niu-tơn (a +
b)^{n}n + 1 số hạng.

    Vậy trong khai triển nhị thức Niu-tơn của (3 - 2x)^{2019}2020 số hạng.

  • Câu 13: Vận dụng
    Tính giá trị biểu thức

    Trong khai triển (1 - 2x)^{20} = a_{0} + a_{1}x + a_{2}x^{2} + \
...\  + a_{20}x^{20}. Tính giá trị a_{0} - a_{1} + a_{2}

    Hướng dẫn:

    Ta có (1 - 2x)^{20} = \sum_{k =
0}^{20}C_{20}^{k}( - 2)^{k}x^{k}, (k \in Z) \Rightarrow a_{0} = C_{20}^{0}, a_{1} = - 2.C_{20}^{1}, a_{2} = ( - 2)^{2}C_{20}^{2} =
4C_{20}^{2}.

    Vậy a_{0} - a_{1} + a_{2} = C_{20}^{0} +
2C_{20}^{1} + 4C_{20}^{2} = 801.

  • Câu 14: Thông hiểu
    Tính tổng các hệ số

    Cho khai triển (1
- 2x)^{20} = a_{0} + a_{1}x + a_{2}x^{2} + \cdots +
a_{20}x_{20}. Giá trị của a_{0} +
a_{1} + a_{2} + \cdots + a_{20} bằng:

    Hướng dẫn:

    (1 - 2x)^{20} = a_{0} + a_{1}x +
a_{2}x^{2} + \cdots + a_{20}x_{20} (1).

    Thay x = 1 vào (1) ta có: a_{0} + a_{1} +
a_{2} + \cdots + a_{20} = ( - 1)^{20} = 1.

  • Câu 15: Nhận biết
    Tìm hệ số của số hạng

    Hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x - \frac{2}{x\sqrt{x}}
ight)^{12} (với x >
0) là:

    Hướng dẫn:

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x\sqrt{x}} ight)^{12} (với x > 0) là:

    T_{k + 1} = C_{12}^{k}.x^{12 - k}.\left(
- \frac{2}{x\sqrt{x}} ight)^{k} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
k}.x^{- \frac{3k}{2}} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
\frac{5k}{2}}.

    Số hạng trên chứa x^{7} suy ra 12 - \frac{5k}{2} = 7 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển trên là = ( -
2)^{2}.C_{12}^{2} = 264.

  • Câu 16: Thông hiểu
    Tính tổng các hệ số trong khai triển

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Hướng dẫn:

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 17: Vận dụng
    Tìm số hạng thỏa mãn

    Trong khai triển của \left( x^{\frac{1}{15}}y^{\frac{1}{3}} +
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{2019}, số hạng mà lũy thừa của xy bằng nhau là số hạng thứ bao nhiêu của khai triển?

    Hướng dẫn:

    Ta có số hạng thứ k + 1 là : C_{2019}^{k}\left(
x^{\frac{1}{15}}y^{\frac{1}{3}} ight)^{2019 - k}\left(
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{k} =
C_{2019}^{k}x^{\frac{2019}{15} + \frac{4}{15}k}y^{\frac{2019}{3} -
\frac{2}{15}k}

    Theo đề bài ta có; \frac{2019}{15} +
\frac{4}{15}k = \frac{2019}{3} - \frac{2}{15}k \Leftrightarrow k =
1346

    Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ 1347.

  • Câu 18: Vận dụng
    Tìm giá trị của n

    Tìm n thuộc tập hợp số tự nhiên, biết rằng 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Hướng dẫn:

    Trước hết ta chứng minh công thức \frac{k}{n}C_{n}^{k} = C_{n - 1}^{k - 1} với 1 \leq k \leq nn \geq 2.

    Thật vậy, \frac{k}{n}C_{n}^{k} =
\frac{k}{n}.\frac{n!}{k!(n - k)!} = \frac{(n - 1)!}{(k - 1)!(n - k)!} =
C_{n - 1}^{k - 1}.(đpcm)

    Áp dụng công thức trên ta có

    1.C_{n}^{1} + 2.C_{n}^{2} + 3.C_{n}^{3}
+ ... + n.C_{n}^{n} = n\left( \frac{1}{n}.C_{n}^{1} +
\frac{2}{n}.C_{n}^{2} + \frac{3}{n}.C_{n}^{3} + ... +
\frac{n}{n}.C_{n}^{n} ight)

    = n\left( C_{n - 1}^{0} + C_{n - 1}^{1}
+ C_{n - 1}^{2} + ... + C_{n - 1}^{n - 1} ight) = n2^{n -
1}

    Theo đề 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n \Leftrightarrow n2^{n - 1} = 256n
\Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9..

  • Câu 19: Nhận biết
    Tìm hệ số của số hạng

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Hướng dẫn:

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

  • Câu 20: Vận dụng
    Tính giá trị của x

    Cho n là số tự nhiên thỏa mãn C_{n}^{0} + 2.C_{n}^{1}
+ 2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049. Biết số hạng thứ 3 trong khai triển Newton của \left( x^{2} - \frac{3}{x}
ight)^{n} có giá trị bằng \frac{81}{2}n. Tìm giá trị của x.

    Hướng dẫn:

    Ta có: C_{n}^{0} + 2.C_{n}^{1} +2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049

    \Rightarrow (2 + 1)^{n}= 59049 \Leftrightarrow 3^{n} = 3^{10} \Leftrightarrow n =10.

    Ta được nhị thức \left( x^{2} -
\frac{3}{x} ight)^{10}.

    Số hạng thứ ba của khai triển là T_{3} =
C_{10}^{2}.\left( x^{2} ight)^{8}.\left( - \frac{3}{x} ight)^{2} =
405x^{14}.

    Theo giả thiết ta có: 405x^{14} =
\frac{81}{2}n \Leftrightarrow 405x^{14} = 405 \Leftrightarrow x^{14} = 1 \Leftrightarrow x = \pm 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Kết nối tri thức

Xem thêm