Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Đại số 10 Chương 1 Kết nối tri thức

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 1 Mệnh đề và tập hợp sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Xác định mệnh đề

    Trong các câu sau, câu nào là mệnh đề?

    Mệnh đề cần tìm là: “Việt Nam là một nước thuộc Châu Á”.

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”?

    Đáp án cần tìm là: \sqrt{2}\mathbb{\notin
Q}.

  • Câu 3: Thông hiểu

    Chọn phương án đúng

    Cho tập hợp C_{\mathbb{R}}A =
\left\lbrack - 3;\sqrt{8} \right), C_{\mathbb{R}}B = ( - 5;2) \cup \left(
\sqrt{3};\sqrt{11} \right). Tập C_{\mathbb{R}}(A \cap B)là:

    Ta có:

    C_{\mathbb{R}}A = \left\lbrack -
3;\sqrt{8} \right), C_{\mathbb{R}}B
= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} \right) = \left( - 5;\
\sqrt{11} \right)

    A = ( - \infty;\  - 3) \cup \left\lbrack
\sqrt{8}; + \infty \right), B = ( -
\infty; - 5\rbrack \cup \left\lbrack \sqrt{11}; + \infty
\right).

    \Rightarrow A \cap B = ( - \infty; -
5\rbrack \cup \left\lbrack \sqrt{11}; + \infty \right) \Rightarrow
C_{\mathbb{R}}(A \cap B) = \left( - 5;\sqrt{11} \right).

  • Câu 4: Thông hiểu

    Tìm hợp của hai tập hợp A và B

    Cho hai tập hợp A = \left\{ x\mathbb{\in
R}\left| 2x^{2} - 3x + 1 = 0 \right.\  \right\},B = \left\{ x\mathbb{\in
N}\left| 3x + 2 < 10 \right.\  \right\} khi đó:

    Cách 1: Giải phương trình 2x^{2} - 3x + 1
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{1}{2} \\
\end{matrix} \right.. Mà x\mathbb{\in R} nên A = \left\{ \frac{1}{2};1 \right\}

    Giải bất phương trình 3x + 2 < 10
\Leftrightarrow x < \frac{8}{3}. mà x\mathbb{\in N} nên chọn B = \left\{ 0;1;2 \right\}

    Giải bất phương trình A \cup B = \left\{
0;1;\frac{1}{2};2 \right\}.

    Cách 2: Ta thử từng phần tử của các đáp án, nếu thỏa yêu cầu bài toán của cả tập A hoặc Bthì đó là đáp án đúng.

  • Câu 5: Thông hiểu

    Tìm câu sai

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề kéo theo chỉ sai khi P đúng Q sai.

    Vậy mệnh đề ở đáp án - \pi < - 2\
\  \Leftrightarrow \ \ \pi^{2} < 4 sai.

  • Câu 6: Nhận biết

    Tìm mệnh đề phủ định mệnh đề đã cho

    Cho mệnh đề: “Có một học sinh trong lớp 10A không thích học môn Toán”. Mệnh đề phủ định của mệnh đề này là:

    Mệnh đề phủ định của mệnh đề “Có một học sinh trong lớp 10A không thích học môn Toán”” là “Mọi học sinh trong lớp 10A đều thích học môn Toán”

  • Câu 7: Nhận biết

    Tìm mệnh đề

    Phát biểu nào sau đây là một mệnh đề?

    Đáp án cần tìm là: “Hà Nội là thủ đô của Việt Nam.”

  • Câu 8: Thông hiểu

    Tìm khẳng định đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Phương án \forall n\mathbb{\in N}:n^{2}
> n sai vì n = 0,\ 0^{2} = 0.

    Phương án \forall x\mathbb{\in R}:x^{2}
< 2 sai vì x = 2, 2^{2} > 2.

    Phương án \forall x\mathbb{\in Z}:2x >
1 sai vì x = - 1, 2.( - 1) < 1.

    Ta có x^{2} > x \Leftrightarrow x^{2}
- x > 0 \Leftrightarrow \left\lbrack \begin{matrix}
x > 1 \\
x < 0 \\
\end{matrix} \right.\ .

    Suy ra tồn tại số thực \left\lbrack
\begin{matrix}
x > 1 \\
x < 0 \\
\end{matrix} \right. thỏa mãn x^{2} > x.

  • Câu 9: Nhận biết

    Chọn đáp án đúng

    Cho tập hợp A = \left\lbrack - \sqrt{3};\
\sqrt{5} \right). Tập hợp C_{\mathbb{R}}A bằng

    Ta có C_{\mathbb{R}}A\mathbb{=
R}\backslash A = \left( - \infty;\  - \sqrt{3} \right) \cup \left\lbrack
\sqrt{5};\  + \infty \right).

  • Câu 10: Vận dụng cao

    Tìm giá trị tham số m thỏa mãn điều kiện

    Cho hai tập hợp A
= ( - \infty;m), B = \lbrack 3m -
1;3m + 3brack. Tìm tất cả các giá trị của tham số m để A
\subset C_{\mathbb{R}}B.

    Ta có: {C_\mathbb{R}}B = \left( { - \infty ;3m - 1} ight) \cup \left( {3m + 3; + \infty } ight)

    Do đó để A \subset {C_\mathbb{R}}B

    \Leftrightarrow m \leqslant 3m - 1 \Leftrightarrow m \geqslant \frac{1}{2}

  • Câu 11: Nhận biết

    Chọn đáp án đúng

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Viết lại mệnh đề “Mọi số nhân với 1 đều bằng chính nó” bằng cách sử dụng kí hiệu \forall hoặc \exists như sau: \forall x\mathbb{\in R},x.1 = x

  • Câu 12: Thông hiểu

    Xác định mệnh đề sai

    Tìm mệnh đề sai.

    Chọn x = \frac{1}{2} \Rightarrow x^{2}
< x. Vậy mệnh đề "\forall
x;x^{2} \geq x" sai.

  • Câu 13: Nhận biết

    Chọn đáp án chính xác

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \mathbf{\exists}: “Có một số nguyên bằng bình phương của chính nó”.

    Đáp án cần tìm là: \exists x\mathbb{\in
Z},x = x^{2}.

  • Câu 14: Nhận biết

    Viết lại tập hợp M

    Cho tập hợp M = \left\{ x\mathbb{\in R}|2
\leq x < 5 \right\}. Hãy viết tập M dưới dạng khoảng, đoạn.

    Ta có (2;\ 5) = \left\{ x\mathbb{\in R}|2
< x < 5 \right\}, \lbrack 2;\
5\rbrack = \left\{ x\mathbb{\in R}|2 \leq x \leq 5
\right\},

    (2;\ 5\rbrack = \left\{ x\mathbb{\in R}|2
< x \leq 5 \right\}\lbrack
2;\ \ 5) = \left\{ x\mathbb{\in R}|2 \leq x < 5 \right\}

  • Câu 15: Nhận biết

    Phát biểu mệnh đề

    Mệnh đề "\exists x\mathbb{\in
R},x^{2} = 5" khẳng định rằng:

    Mệnh đề "\exists x\mathbb{\in
R},x^{2} = 5" khẳng định rằng: “Có ít nhất một số thực mà bình phương của nó bằng 5.”

  • Câu 16: Vận dụng cao

    Tìm số học sinh thỏa mãn yêu cầu

    Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa, biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong 3 môn Toán, Lý, Hóa?

    Gọi T, L, H lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa.

    Khi đó tương tự Ví dụ 13 ta có công thức:

    A black background with a black and white logoDescription automatically generated

    |T \cup L \cup H| = |T| + |L| + |H| - |T
\cap L| - |L \cap H| - |H \cap T| + |T \cap L \cap H|

    \Leftrightarrow 45 = 25 + 23 + 20 - 11 -
8 - 9 + |T \cap L \cap H| \Leftrightarrow |T \cap L \cap H| =
5

    Vậy có 5 học sinh giỏi cả 3 môn.

  • Câu 17: Vận dụng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Xét mệnh đề \forall n\mathbb{\in N},n^{2}
+ 1 không chia hết cho 3:

    TH1: n = 3k với k\mathbb{\in N}, ta có: n^{2} + 1 = (3k)^{2} + 1 = 9k^{2} + 1 không chia hết cho 3.

    TH2: n = 3k + 1 với k\mathbb{\in N}, ta có: n^{2} + 1 = (3k + 1)^{2} + 1 = 9k^{2} + 6k +
2 không chia hết cho 3.

    TH3: n = 3k + 2 với k\mathbb{\in N}, ta có: n^{2} + 1 = (3k + 2)^{2} + 1 = 9k^{2} + 12k +
5 không chia hết cho 3.

    \Rightarrow \forall n\mathbb{\in
N} thì n^{2} + 1 không chia hết cho 3.

  • Câu 18: Nhận biết

    Chọn kí hiệu thích hợp

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”?

    Đáp án cần tìm là: \sqrt{\mathbf{2}}\mathbb{\notin
Q}\mathbf{.}

  • Câu 19: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho tập hợp B = \left\{ 1;3;m \right\},C
= \left\{ x\mathbb{\in R}\left| \left( x^{2} - 4x + 3 \right) = 0
\right.\  \right\}. Tìm \mathbf{m} để C \subset B

    Giải phương trình x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} \right.x\mathbb{\in R} nên C = \left\{ 1;3 \right\}.

    Để C \subset B thì m=4.

  • Câu 20: Nhận biết

    Tìm tập A\B

    Cho tập A = \left\{ 0;2;4;6;8
\right\}; B = \left\{ 3;4;5;6;7
\right\}. Tập A\backslash
B

    Ta có A\backslash B = \left\{ 0;\ 2;\ 8
\right\}.

  • Câu 21: Nhận biết

    Chọn phát biểu đúng

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 22: Thông hiểu

    Tìm giao của hai tập hợp

    Xác định A ∩ B trong trường hợp sau:

    \begin{matrix}  A = \left\{ {(x;y)|x,y \in \mathbb{R},3x - y = 7} ight\} \hfill \\  B = \left\{ {(x;y)|x,y \in \mathbb{R},x - y = 1} ight\} \hfill \\ \end{matrix}

    Tập hợp A ∩ B là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x - y = 7} \\   {x - y = 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 3} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow \left( {x;y} ight) = \left( {3;2} ight) \hfill \\ \end{matrix}

    Vậy A \cap B = \left\{ {\left( {3;2} ight)} ight\}

  • Câu 23: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho các tập hợp sau: A = \left\{ \left. \
x\mathbb{\in R} \right|\left( x^{2} + 7x + 6 \right)\left( x^{2} - 4
\right) = 0 \right\}; B = \left\{
\left. \ x\mathbb{\in N} \right|2x \leq 8 \right\};

    C = \left\{ \left. \ 2x + 1 \right|x \in
\mathbb{Z,} - 2 \leq x \leq 4 \right\}. Xét tính đúng sai của các khẳng định sau:

    a) Tập hợp A có 3 phần tử. Sai||Đúng

    b) A \cup B = \left\{ - 6; - 2; -
1;0;1;2;3;4 \right\}.Đúng||Sai

    c) A \cap B = \{ 2\}. Đúng||Sai

    d) A \cup C = \left\{ - 6; - 3; -
2;2;3;5;7;9 \right\}. Sai||Đúng

    Đáp án là:

    Cho các tập hợp sau: A = \left\{ \left. \
x\mathbb{\in R} \right|\left( x^{2} + 7x + 6 \right)\left( x^{2} - 4
\right) = 0 \right\}; B = \left\{
\left. \ x\mathbb{\in N} \right|2x \leq 8 \right\};

    C = \left\{ \left. \ 2x + 1 \right|x \in
\mathbb{Z,} - 2 \leq x \leq 4 \right\}. Xét tính đúng sai của các khẳng định sau:

    a) Tập hợp A có 3 phần tử. Sai||Đúng

    b) A \cup B = \left\{ - 6; - 2; -
1;0;1;2;3;4 \right\}.Đúng||Sai

    c) A \cap B = \{ 2\}. Đúng||Sai

    d) A \cup C = \left\{ - 6; - 3; -
2;2;3;5;7;9 \right\}. Sai||Đúng

    a) Sai: Ta có \left( x^{2} + 7x + 6\right)\left( x^{2} - 4 \right) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} + 7x + 6 = 0 \\x^{2} - 4 = 0\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 6 \\x = - 2 \\x = 2\end{matrix} \right..

    Vậy A = \left\{ - 6; - 2; - 1;2
\right\}

    b) Đúng: Ta có \left\{ \begin{matrix}
x\mathbb{\in N} \\
2x \leq 8
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x\mathbb{\in N} \\
x \leq 4
\end{matrix} \Leftrightarrow x \in \{ 0,1,2,3,4\} \right.\  \right.. Vậy B = \{
0;1;2;3;4\}.

    Ta có \left\{ \begin{matrix}
x\mathbb{\in Z} \\
- 2 \leq x \leq 4
\end{matrix} \Leftrightarrow x \in \{ - 2, - 1,0,1,2,3,4\} \right.. Suy ra C = \{ - 3; -
1;1;3;5;7;9\}.

    A \cup B = \{ - 6; - 2; -
1;0;1;2;3;4\}

    c) Đúng:A \cap B = \{ 2\},

    d) Sai:A \cup C = \{ - 6; - 3; - 2; -
1;1;2;3;5;7;9\}.

  • Câu 24: Nhận biết

    Liệt kê các phần tử của tập X

    Hãy liệt kê các phần tử của tập X =
\left\{ x\mathbb{\in R}\left| x^{2} + x + 1 = 0
\right.\  \right\}.

    Vì phương trình x^{2} + x + 1 =
0 vô nghiệm nên X =
\varnothing.

  • Câu 25: Thông hiểu

    Chọn mệnh đề đúng

    Cho mệnh đề chứa biến P(x): "{x^2} = 4,x \in \mathbb{R}". Chọn mệnh đề đúng trong các mệnh đề sau.

    Ta có: P( - 2):"( - 2)^{2} =
4" là đúng nên chọn đáp án P(-2).

  • Câu 26: Nhận biết

    Tìm một mệnh đề

    Phát biểu nào sau đây là một mệnh đề?

    Phát biểu ở “Mùa thu Hà Nội đẹp quá!”; “Bạn có đi học không?”; “Đề thi môn Toán khó quá1” là câu cảm và câu hỏi nên không là mệnh đề.

    Vậy mệnh đề cần tìm là: “Hà Nội là thủ đô của Việt Nam”.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Cho hai tập hợp A = \left\{ x\mathbb{\in
Z}\left| (x^{2} - 10x + 21)(x^{3} - x) = 0 \right.\  \right\}, B = \left\{ x\mathbb{\in Z}\left| - 3 <
2x + 1 < 5 \right.\  \right\} khi đó tập X = A \cup B là:

    Cách 1: Giải phương trình \left\lbrack
\begin{matrix}
x^{2} - 10x + 21 = 0 \\
x^{3} - x = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\lbrack \begin{matrix}
x = 3 \\
x = 7 \\
\end{matrix} \right.\  \\
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} \right.\  \\
\end{matrix} \right..

    x\mathbb{\in Z} nên A = \left\{ - 1;0;1;3;7 \right\}

    Giải bất phương trình - 3 < 2x + 1
< 5 \Leftrightarrow - 2 < x < 2. mà x\mathbb{\in Z} nên chọn B = \left\{ - 1;0;1 \right\}

    Giải bất phương trình A \cup B = \left\{
- 1;0;1;3;7 \right\}

    Cách 2: Ta thử từng phần tử của các đáp án, nếu thỏa yêu cầu bài toán của cả tập A hoặc B thì đó là đáp án đúng.

  • Câu 28: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 29: Nhận biết

    Tính số tập con của tập X

    Cho tập X = \left\{ 2;3;4;\ \ 5
\right\}. Hỏi tập X có bao nhiêu tập hợp con?

    Số tập con: 24 = 16. (Số tập con của tập có n phần tử là 2n )

  • Câu 30: Vận dụng

    Chọn mệnh đề đúng

    Trong các mệnh đề sau đây, mệnh đề nào có là đúng?

    + Nếu a + b chia hết cho c thì ab cùng chia hết cho c \Rightarrow Mệnh đề sai. Ví dụ: 2 + 7 chia hết cho 3 nhưng 27 không chia hết cho 3.

    + Nếu 2 tam giác có diện tích bằng nhau thì bằng nhau \Rightarrow Mệnh đề sai. Ví dụ, 1 tam giác vuông và 1 tam giác đều có diện tích bằng nhau nhưng chúng không bằng nhau.

    + Nếu a chia hết cho 9 thì a chia hết cho 3 \Rightarrow Mệnh đề đúng.

    + Nếu một số chia hết cho 5 thì số đó tận cùng bằng 0 \Rightarrow Mệnh đề sai. Ví dụ 25 chia hết cho 5 nhưng không tận cùng bằng 0.

    Chọn đáp án: Nếu a chia hết cho 9 thì a chia hết cho 3.

  • Câu 31: Thông hiểu

    Tìm câu sai

    Cho định lí "\forall x \in X,P(x)
\Rightarrow Q(x)". Chọn khẳng định không đúng.

    Định lí "\forall x \in X,P(x)
\Rightarrow Q(x)" có thể phát biểu bằng một trong các cách sau:

    Nếu P(x) thì Q(x)

    P(x) là điều kiện đủ để có Q(x)

    Q(x) là điều kiện cần (ắt có) để có P(x)

    P(x) là giả thiết, Q(x) là kết luận.

  • Câu 32: Thông hiểu

    Tìm tất cả các giá trị của tham số a

    Cho hai tập A = \lbrack
0;5\rbrack; B = (2a;3a +
1\rbrack, với a > - 1. Tìm tất cả các giá trị của a để A \cap B \neq \varnothing.

    Ta có:

    A \cap B \neq \varnothing
\Leftrightarrow \left\{ \begin{matrix}
2a < 3a + 1 \\
\left\lbrack \begin{matrix}
3a + 1 \geq 0 \\
2a < 5 \\
\end{matrix} \right.\  \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a > - 1 \\
\left\lbrack \begin{matrix}
a \geq - \frac{1}{3} \\
a < \frac{5}{2} \\
\end{matrix} \right.\  \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a \geq - \frac{1}{3} \\
- 1 < a < \frac{5}{2} \\
\end{matrix} \right.\  \Leftrightarrow - \frac{1}{3} \leq a <
\frac{5}{2}.

  • Câu 33: Thông hiểu

    Mệnh đề phủ định của A là

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 34: Nhận biết

    Tìm mệnh đề sai

    Cho tập hợp P. Tìm mệnh đề sai trong các mệnh đề sau?

    Các đáp án P \subset P, \varnothing \subset P, P \in \left\{ P \right\} đúng. Đáp án “P \in P” sai.

  • Câu 35: Nhận biết

    Phát biểu mệnh đề

    Mệnh đề "\ \exists x\mathbb{\in R},\
x^{2} = 3" khẳng định rằng:

    Phát biểu mệnh đề như sau: “Có ít nhất một số thực mà bình phương của nó bằng 3”.

  • Câu 36: Nhận biết

    Tìm mối quan hệ giữa hai tập hợp

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 37: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 38: Nhận biết

    Tìm câu là mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề ?

    a) Mấy giờ rồi?

    b) Buôn Mê Thuột là thành phố của Đắk Lắk.

    c) 2019 là số nguyên tố.

    d) Làm việc đi !

    “Mấy giờ rồi ?” đây là câu hỏi nên không phải câu mệnh đề.

    “Buôn Mê Thuột là thành phố của Đắk Lắk” đây là câu khẳng định đúng nên là một mệnh đề.

    2019 là số nguyên tố ” đây là câu khẳng định sai nên là một mệnh đề.

    “Làm việc đi !” đây là câu cảm thán nên không phải là mệnh đề.

  • Câu 39: Thông hiểu

    Chọn khẳng định đúng

    Cho ba tập hợp E,FG, biết E
\subset F,\ F \subset GG
\subset E. Khẳng định nào sau đây đúng.

    Lấy x bất kì thuộc F,F
\subset G nên x \in GG \subset E nên x \in E do đó F \subset E. Lại do E \subset F nên E = F.

    Lấy x bất kì thuộc G,G
\subset E nên x \in EE \subset F nên x \in F do đó G \subset F. Lại do F \subset G nên F = G.

    Vậy E = F = G.

  • Câu 40: Thông hiểu

    Tìm mệnh đề đúng

    Cho các tập hợp M = \{ x\mathbb{\in
N}\left| x \right. là bội của 2\}, N = \{
x\mathbb{\in N}\left| x \right. là bội của 6\}, P = \{
x\mathbb{\in N}\left| x \right. là ước của 2\}, Q = \{
x\mathbb{\in N}\left| x \right. là ước của 6\}. Mệnh đề nào sau đây đúng?

    Ta có các tập hợp \left\{ \begin{matrix}
M = \left\{ x\left| x = 2k,\ \ k \in \mathbb{N}^{*} \right.\  \right\} =
\left\{ 2;4;6;8;10;... \right\} \\
N = \left\{ x\left| x = 6k,\ \ k \in \mathbb{N}^{*} \right.\  \right\} =
\left\{ 6;12;18;24;... \right\} \\
P = \left\{ 1;2 \right\} \\
Q = \left\{ 1;2;3;6 \right\} \\
\end{matrix} \right..

    Do đó P \cap Q = Q.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Đại số 10 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo