Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Giá trị lượng giác của một góc từ 0 đến 180 độ (Trung bình)

Cùng luyện tập bài Giá trị lượng giác của một góc từ 0 đến 180 độ các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính giá trị lượng giác

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Hướng dẫn:

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 2: Thông hiểu
    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \cos\alpha.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{5}{13}.

  • Câu 3: Thông hiểu
    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{\sqrt{5}}{3}\pi < \alpha <
\frac{3\pi}{2}. Tính \tan\alpha.

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{2}{3} \\
\pi < \alpha < \frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha = -
\frac{2}{3}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{2}{\sqrt{5}}.

  • Câu 4: Thông hiểu
    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \tan\alpha.

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi. \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{5}{13}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = - \frac{5}{12}.

  • Câu 5: Thông hiểu
    Tính giá trị lượng giác

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Hướng dẫn:

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 6: Thông hiểu
    Khẳng định nào sau đây đúng?

    Cho góc \alpha thỏa \sin\alpha = \frac{3}{5}90^{O} < \alpha < 180^{O}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{4}{5} \\
90{^\circ} < \alpha < 180{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{4}{5}.

  • Câu 7: Thông hiểu
    Khẳng định nào sau đây đúng?

    Cho góc \alpha thỏa \cot\alpha = \frac{3}{4}0^{O} < \alpha < 90^{O}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\frac{1}{sin^{2}\alpha} = 1 + cot^{2}\alpha = 1 + \left( \frac{3}{4}
ight)^{2} = \frac{25}{16} \\
0{^\circ} < \alpha < 90{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{4}{5}.

  • Câu 8: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \sin(\pi + \alpha) = - \frac{1}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \tan\left( \frac{7\pi}{2} - \alpha
ight).

    Hướng dẫn:

    Ta có P = \tan\left( \frac{7\pi}{2} -
\alpha ight) = \tan\left( 3\pi + \frac{\pi}{2} - \alpha
ight) = \tan\left( \frac{\pi}{2}
- \alpha ight) = \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}.

    Theo giả thiết: \sin(\pi + \alpha) = -
\frac{1}{3} \Leftrightarrow -
\sin\alpha = - \frac{1}{3} \Leftrightarrow \sin\alpha =
\frac{1}{3}.

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{2\sqrt{2}}{3} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{2\sqrt{2}}{3}\overset{}{ightarrow}P = - 2\sqrt{2}.

  • Câu 9: Vận dụng
    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn 3cos\alpha + 2sin\alpha = 2\sin\alpha < 0. Tính \sin\alpha.

    Hướng dẫn:

    Ta có 3cos\alpha + 2sin\alpha =
2 \Leftrightarrow (3cos\alpha +
2sin\alpha)^{2} = 4

    \begin{matrix}
\Leftrightarrow 9cos^{2}\alpha + 12cos\alpha.sin\alpha + 4sin^{2}\alpha
= 4 \\
\\
\end{matrix}

    \Leftrightarrow 5cos^{2}\alpha +
12cos\alpha.sin\alpha = 0

    \Leftrightarrow \cos\alpha(5cos\alpha +
12sin\alpha) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\alpha = 0 \\
5cos\alpha + 12sin\alpha = 0 \\
\end{matrix} ight.\ .

    \bullet \cos\alpha = 0 \Rightarrow \sin\alpha =
1: loại (vì \sin\alpha <
0).

    \bullet 5cos\alpha + 12sin\alpha = 0, ta có hệ phương trình \left\{ \begin{matrix}
5cos\alpha + 12sin\alpha = 0 \\
3cos\alpha + 2sin\alpha = 2 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\sin\alpha = - \frac{5}{13} \\
\cos\alpha = \frac{12}{13} \\
\end{matrix} ight.\ .

  • Câu 10: Vận dụng
    Tính giá trị của biểu thức

    Cho \cot\alpha =
- 3\sqrt{2} với \ \frac{\pi}{2}
< \alpha < \pi. Khi đó giá trị \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} bằng:

    Hướng dẫn:

    \frac{1}{sin^{2}\alpha} = 1 +
cot^{2}\alpha = 1 + 18 = 19

    ightarrow sin^{2}\alpha = \frac{1}{19}
ightarrow \sin\alpha = \pm \frac{1}{\sqrt{19}}

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \sin\alpha > 0 \Rightarrow \sin\alpha =
\frac{1}{\sqrt{19}}

    Suy ra \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} = \frac{sin^{2}\frac{\alpha}{2} +
cos^{2}\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{2}{\sin\alpha} =
2\sqrt{19}.

  • Câu 11: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \cos\alpha = \frac{3}{5}\frac{\pi}{4} < \alpha <
\frac{\pi}{2}. Tính P =
\sqrt{tan^{2}\alpha - 2tan\alpha + 1}.

    Hướng dẫn:

    Ta có P = \sqrt{\left( \tan\alpha - 1
ight)^{2}} = \left| \tan\alpha - 1 ight|.

    \frac{\pi}{4} < \alpha <
\frac{\pi}{2}\overset{}{ightarrow}\tan\alpha > 1 \overset{}{ightarrow}P = \tan\alpha -
1.

    Theo giả thiết: \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{4}{5} \\
\frac{\pi}{4} < \alpha < \frac{\pi}{2} \\
\end{matrix} ight. ightarrow
\sin\alpha = \frac{4}{5} ightarrow \tan\alpha = \frac{4}{3}
ightarrow P = \frac{1}{3}

  • Câu 12: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\tan\left( \alpha + \frac{\pi}{4} ight) =
1. Tính P = \cos\left( \alpha -
\frac{\pi}{6} ight) + \sin\alpha.

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{3\pi}{4} < \alpha +
\frac{\pi}{4} < \frac{9\pi}{4} \\
\tan\left( \alpha + \frac{\pi}{4} ight) = 1 \\
\end{matrix} ight.

    ightarrow \alpha + \frac{\pi}{4} =
\frac{5\pi}{4} ightarrow\alpha = \pi.

    Thay \alpha = \pi vào P, ta được P
= - \frac{\sqrt{3}}{2}.

  • Câu 13: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\cot\left( \alpha + \frac{\pi}{3} ight) =
- \sqrt{3}. Tính giá trị của biểu thức P = \sin\left( \alpha + \frac{\pi}{6} ight) +
\cos\alpha.

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{5\pi}{6} < \alpha +
\frac{\pi}{3} < \frac{7\pi}{3} \\
\cot\left( \alpha + \frac{\pi}{3} ight) = - \sqrt{3} \\
\end{matrix} ight. ightarrow
\alpha + \frac{\pi}{3} = \frac{11\pi}{6} ightarrow \alpha =
\frac{3\pi}{2}.

    Thay \alpha = \frac{3\pi}{2} vào P, ta được P = - \frac{\sqrt{3}}{2}.

  • Câu 14: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \tan\alpha = - \frac{4}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \frac{sin^{2}\alpha - \cos\alpha}{\sin\
\alpha - cos^{2}\alpha}.

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
cos^{2}\alpha = \frac{1}{1 + tan^{2}\alpha} = \frac{9}{25} ightarrow
\cos\alpha = \pm \frac{3}{5} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. ightarrow
\cos\alpha = - \frac{3}{5}

    ightarrow \sin\alpha =
\tan\alpha.cos\alpha = \frac{4}{5}.

    Thay \sin\alpha = \frac{4}{5}\cos\alpha = - \frac{3}{5} vào P, ta được P = \frac{31}{11}.

  • Câu 15: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \tan\alpha = 2. Tính P = \frac{3sin\alpha - 2cos\alpha}{5cos\alpha +
7sin\alpha}.

    Hướng dẫn:

    Chia cả tử và mẫu của P cho \cos\alpha ta được P = \frac{3tan\alpha - 2}{5 + 7tan\alpha} =
\frac{3.2 - 2}{5 + 7.2} = \frac{4}{19}

  • Câu 16: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \cot\alpha = \frac{1}{3}. Tính P = \frac{3sin\alpha + 4cos\alpha}{2sin\alpha -
5cos\alpha}.

    Hướng dẫn:

    Chia cả tử và mẫu của P cho \sin\alpha ta được P = \frac{3 + 4cot\alpha}{2 - 5cot\alpha} =
\frac{3 + 4.\frac{1}{3}}{2 - 5.\frac{1}{3}} = 13.

  • Câu 17: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \tan\alpha = 5. Tính P = sin^{4}\alpha - cos^{4}\alpha.

    Hướng dẫn:

    Ta có P = \left( sin^{2}\alpha -
cos^{2}\alpha ight).\left( sin^{2}\alpha + cos^{2}\alpha
ight) = sin^{2}\alpha -
cos^{2}\alpha.(*)

    Chia hai vế của (*)cho cos^{2}\alpha ta được \frac{P}{cos^{2}\alpha} =
\frac{sin^{2}\alpha}{cos^{2}\alpha} - 1

    \Leftrightarrow P\left( 1 + tan^{2}\alpha
ight) = tan^{2}\alpha - 1 \Leftrightarrow P = \frac{tan^{2}\alpha - 1}{1 +
tan^{2}\alpha}. = \frac{5^{2} - 1}{1 + 5^{2}} =
\frac{12}{13}.

  • Câu 18: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \sin\alpha + \cos\alpha = \frac{5}{4}. Tính P = \sin\alpha.cos\alpha.

    Hướng dẫn:

    Từ giả thiết, ta có \left( \sin\alpha +
\cos\alpha ight)^{2} = \frac{25}{16} \Leftrightarrow 1 + 2sin\alpha.cos\alpha =
\frac{25}{16}

    ightarrow P = \sin\alpha.cos\alpha =
\frac{9}{32}.

  • Câu 19: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \sin\alpha\cos\alpha = \frac{12}{25}\sin\alpha + \cos\alpha > 0. Tính P = sin^{3}\alpha +
cos^{3}\alpha.

    Hướng dẫn:

    Áp dụng a^{3} + b^{3} = (a + b)^{3} -
3ab(a + b), ta có

    P = sin^{3}\alpha +
cos^{3}\alpha = \left( \sin\alpha +
\cos\alpha ight)^{3} - 3sin\alpha\cos\alpha\left( \sin\alpha +
\cos\alpha ight).

    Ta có \left( \sin\alpha + \cos\alpha
ight)^{2} = sin^{2}\alpha + 2sin\alpha\cos\alpha +
cos^{2}\alpha = 1 + \frac{24}{25} =
\frac{49}{25}

    \sin\alpha + \cos\alpha >
0 nên ta chọn \sin\alpha +
\cos\alpha = \frac{7}{5}.

    Thay \left\{ \begin{matrix}
\sin\alpha + \cos\alpha = \frac{7}{5} \\
\sin\alpha\cos\alpha = \frac{12}{25} \\
\end{matrix} ight. vào P, ta được P
= \left( \frac{7}{5} ight)^{3} - 3.\frac{12}{25}.\frac{7}{5} =
\frac{91}{125}.

  • Câu 20: Vận dụng
    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn 0 < \alpha < \frac{\pi}{4}\sin\alpha + \cos\alpha =
\frac{\sqrt{5}}{2}. Tính P =
\sin\alpha - \cos\alpha.

    Hướng dẫn:

    Ta có \left( \sin\alpha - \cos\alpha
ight)^{2} + \left( \sin\alpha + \cos\alpha ight)^{2} = 2\left( sin^{2}\alpha + cos^{2}\alpha ight) =
2.

    Suy ra \left( \sin\alpha - \cos\alpha
ight)^{2} = 2 - \left( \sin\alpha + \cos\alpha ight)^{2} = 2 - \frac{5}{4} =
\frac{3}{4}.

    Do 0 < \alpha <
\frac{\pi}{4} suy ra \sin\alpha
< \cos\alpha nên \sin\alpha -
\cos\alpha < 0. Vậy P = -
\frac{\sqrt{3}}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (5%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (65%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Kết nối tri thức

Xem thêm