Tìm tọa độ giao điểm
Tìm tọa độ giao điểm của đường thẳng
và trục tung.
Chọn
.
Đề kiểm tra 45 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tìm tọa độ giao điểm
Tìm tọa độ giao điểm của đường thẳng
và trục tung.
Chọn
.
Tìm tọa độ vectơ
Trong hệ trục tọa độ
, tọa độ của vectơ
là:
Tọa độ vectơ .
Tìm phương trình đường phân giác
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Viết phương trình tham số của đường thẳng
Viết phương trình tham số của đường thẳng
đi qua điểm
và vuông góc với trục
.
Tìm tọa độ tâm và bán kính
Tọa độ tâm
và bán kính
của đường tròn
là:
Viết phương trình tổng quát của đường thẳng
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Tìm tiêu cự của elip
Cho Elip
đi qua điểm
và có tâm sai
. Tiêu cự của
là
Gọi phương trình chính tắc của là
với
.
Vì đi qua điểm
nên
.
Lại có .
Viết phương trình tham số của đường thẳng
Trong mặt phẳng với hệ tọa độ
, cho ba điểm
¸
và
. Đường thẳng đi qua điểm
và song song với
có phương trình tham số là:
Gọi d là đường thẳng qua A và song song với PQ.
Ta có:
Chọn mệnh đề đúng
Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
Giả sử:
loại đáp án (d) đi qua
.
Ta có
⇒VTPT
⇒VTCP loại đáp án (d) có phương trình tham số:
Ta có
hệ số góc
.
Tìm phương trình chính tắc của elip
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Tìm m thỏa mãn điều kiện
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Viết phương trình đường tròn
Phương trình đường tròn có tâm thuộc đường thẳng
, tiếp xúc với đường thẳng
đồng thời đường tròn đi qua điểm
là:
Gọi tâm của đường tròn cần tìm là
Theo giả thiết, ta có:
Với thì đường tròn cần tìm có tâm
, bán kính
, và có phương trình là:
Với thì đường tròn cần tìm có tâm
, bán kính
, và có phương trình là:
Vậy có hai đường tròn thỏa mãn yêu cầu bài toán là:
Tìm phương trình đường tròn (C)
Xác định phương trình đường tròn
tâm
. Biết
cắt đường thẳng
tại hai điểm
sao cho
.
Gọi h là khoảng cách từ điểm I đến đường thẳng . Ta có:
Gọi R là bán kính đường tròn, từ giả thiết suy ra:
Vậy phương trình đường tròn cần tìm là: .
Chọn phương trình chính tắc của Hypebol
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?
Phương trình Hypebol có dạng
Vậy phương trình cần tìm là .
Tìm điểm thuộc đường thẳng
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Viết phương trình đường tròn
Xác định phương trình đường tròn
có tâm nằm trên đường thẳng
và tiếp xúc với hai đường thẳng có phương trình
và
?
Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi . Mặt khác đường tròn tiếp xúc với hai đường thẳng
và
nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.
Với thì
khi đó phương trình đường tròn là:
Với thì
khi đó phương trình đường tròn là:
.
Tìm tọa độ tâm và bán kính
Tọa độ tâm
và bán kính
của đường tròn
là:
Tìm tọa độ tâm và bán kính
Tọa độ tâm
và bán kính
của đường tròn
là:
Chọn khẳng định sai
Cho elip
có phương trình
. Khẳng định nào sai trong các khẳng định sau?
:
.
Elip có
,
,
.
Tiêu cự của elip là
nên khẳng định “
có tiêu cự bằng 3” là khẳng định sai.
Điền vào chỗ trống
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Chọn đáp án đúng
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Tìm phương trình chính tắc của elip
Cho elip đi qua điểm
và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:
Phương trình chính tắc của elip có dạng
Theo bài ra ta có hệ phương trình:
Vậy phương trình chính tắc của elip là: .
Tìm a để hai đường thẳng vuông góc
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Tính độ dài MN
Cho elip
. Qua một tiêu điểm của
dựng đường thẳng song song với trục
và cắt
tại hai điểm
và
. Độ dài
bằng bao nhiêu?
Xét
Khi đó, Elip có tiêu điểm là đường thẳng
//
và đi qua
là
Giao điểm của và
là nghiệm của hệ phương trình
Vậy tọa độ hai điểm .
Tìm đường thẳng vuông góc
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Tìm điều kiện của tham số m
Cho phương trình
. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?
Để phương trình đã cho là phương trình đường tròn thì:
Vậy đáp án chính xác là: .
Tìm m thỏa mãn điều kiện
Với giá trị nào của
thì hai đường thẳng
và
vuông góc?
Xác định vị trí tương đối của hai đường thẳng
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Viết phương trình tổng quát của đường thẳng
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Vậy phương trình tổng quát của đường thẳng cần tìm là .
Tìm m thỏa mãn điều kiện
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
Xác định phương trình đường tròn
Viết phương trình đường tròn
có tâm
và tiếp xúc với đường thẳng
?
Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng nên
Vậy phương trình đường tròn cần tìm là: .
Chọn đáp án đúng
Viết phương trình đường tròn nội tiếp tam giác
, biết tọa độ
?
Ta có:
Mặt khác (vì cùng bằng diện tích tam giác ABO)
Suy ra
Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ
Vậy phương trình đường tròn nội tiếp tam giác OAB là:
Tìm mệnh đề đúng
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Xác định tâm và bán kính đường tròn
Cho phương trình đường tròn
. Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có:
nên đường tròn (C) có tâm
và bán kính
.
Viết phương trình parabol (P)
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Tìm phương trình chính tắc của elip
Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm
và đi qua điểm
?
Gọi phương trình chính tắc của elip là:
Ta có:
Khi đó ta có:
Do elip đi qua điểm
Từ (*) và (**) ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: .
Tìm tọa độ hai điểm P và Q
Cho hyperbol
có hai tiêu điểm là
. Tìm trên một nhánh của
tọa độ hai điểm
. Biết rằng
là tam giác đều.
Ta có :
Gọi (Do
đối xứng với nhau qua
)
đều
. Thay vào
ta có:
Vậy ,
.
Tìm tâm và bán kính đường tròn
Xác định tâm và bán kính đường tròn
?
Ta có:
Vậy đường tròn có bán kính và bán kính
Tính khoảng cách từ điểm đến đường thẳng
Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:
Ta có: .
Tìm tọa độ giao điểm
Tìm tọa độ giao điểm của đường thẳng
và trục hoành.
Chọn
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: