Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Viết phương trình tiếp tuyến

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 2: Nhận biết

    Tìm vectơ chỉ phương

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).

     Vectơ chỉ phương của đường thẳng AB là (2; 1).

  • Câu 3: Vận dụng

    Tìm độ dài các đoạn thẳng

    Cho elip (E): \frac{x^{2}}{169}+\frac{y^{2}}{144}=1. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài MF_1MF_2 lần lượt là:

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 13;b = 12} ight)

    Ta có: c = \sqrt {{a^2} - {b^2}}  = 5

    Khi đó: {F_1}\left( { - 5;0} ight);{F_2}\left( {5;0} ight)

    Với M\left( {{x_M};{y_M}} ight) ta có:

    \begin{matrix}  \overrightarrow {{F_1}M}  = \left( {{x_M} + 5;{y_M}} ight) \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + 144.\left( {1 - \frac{{{x_M}^2}}{{169}}} ight)}  \hfill \\   \Rightarrow {F_1}M = \sqrt {169 + 10{x_M} + \dfrac{{25{x_M}^2}}{{169}}}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {13 + \dfrac{{5{x_M}}}{{13}}} ight)}^2}}  \hfill \\   \Rightarrow {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}},\left( {{F_1}M > 0} ight) \hfill \\ \end{matrix}

    Tương tự ta có: {F_2}M = 13 - \frac{{5{x_M}}}{{13}},\left( {{F_2}M > 0} ight)

    Theo bài ra ta có: {x_M} =  - 13

    \begin{matrix}  {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}} = 8 \hfill \\  {F_2}M = 13 - \dfrac{{5{x_M}}}{{13}} = 18 \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.d_{2}:mx
+ 2y - 14 = 0 song song?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.\  ightarrow A(8;10) \in d_{1},\ \
{\overrightarrow{n}}_{1} = (1;m + 1) \\
d_{2}:mx + 2y - 14 = 0 ightarrow {\overrightarrow{n}}_{2} = (m;2) \\
\end{matrix} ight.

    \overset{d_{1}//d_{2}}{ightarrow}\left\{\begin{matrix}A\in d_{2} \\\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}{\overrightarrow{n}}_{1} = (1;1) \\{\overrightarrow{n}}_{2} = (0;2) \\\end{matrix} ight.\  ightarrow (KTM) \\meq0 ightarrow \dfrac{1}{m} = \dfrac{m + 1}{2} \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}8m + 6eq0 \\meq0 \\m = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.\ .

  • Câu 6: Nhận biết

    Xét vị trí tương đối của hai đường thẳng

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 7: Nhận biết

    Xác định phương trình chính tắc

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 8: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 = 0, biết tiếp tuyến đi qua điểm B(4;6).

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng

    \Delta:ax + by - 4a - 6b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|2a + 4b|}{\sqrt{a^{2} + b^{2}}} = 2
\Leftrightarrow b(3b + 4a) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
b = 0 ightarrow a = 1,\ b = 0 \\
3b = - 4a ightarrow a = 3,\ b = - 4 \\
\end{matrix} ight.\ .

  • Câu 9: Nhận biết

    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 10: Vận dụng

    Khẳng định nào dưới đây là đúng?

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (với a > b > 0). Biết F_{1},F_{2} là hai tiêu điểm. Cho điểm M di động trên (E). Chọn khẳng định đúng?

    Ta có:

    MF_{1} = a + \frac{cx}{a};\ MF_{2} = a -
\frac{cx}{a} \Rightarrow MF_{1}.MF_{2} = a^{2} -
\frac{c^{2}x^{2}}{a^{2}}.

    \begin{matrix}
M(x;y) \in (E) \Rightarrow \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1
\\
\Rightarrow y^{2} = b^{2}\left( 1 - \frac{x^{2}}{a^{2}} ight)
\Rightarrow OM^{2} = x^{2} + y^{2} = x^{2} + b^{2}\left( 1 -
\frac{x^{2}}{a^{2}} ight) = x^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}
\\
\end{matrix} \begin{matrix}
MF_{1}.MF_{2} + OM^{2} = a^{2} - \frac{c^{2}x^{2}}{a^{2}} + x^{2} +
b^{2} - \frac{b^{2}x^{2}}{a^{2}} = a^{2} + b^{2} + x^{2} - \left(
\frac{c^{2}x^{2}}{a^{2}} + \frac{b^{2}x^{2}}{a^{2}} ight) \\
= a^{2} + b^{2} + x^{2} - \frac{\left( b^{2} + c^{2}
ight)x^{2}}{a^{2}} \\
\end{matrix}

    a^{2} = b^{2} + c^{2} nên MF_{1}.MF_{2} + OM^{2} = a^{2} + b^{2} +
x^{2} - \frac{\left( b^{2} + c^{2} ight)x^{2}}{a^{2}} = a^{2} + b^{2}
+ x^{2} - \frac{a^{2}x^{2}}{a^{2}} = a^{2} + b^{2}.

  • Câu 11: Thông hiểu

    Tìm m để hai đường thẳng vuông góc

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):2x - 3y - 10 = 0\left( d_{2} ight):\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight.. Tìm giá trị của tham số m để hai đường thẳng vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 3) \\
\overrightarrow{u_{2}} = ( - 3; - 4m) \Rightarrow \overrightarrow{n_{2}}
= (4m, - 3) \\
\end{matrix} ight.

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow 2(4m) - 3.( - 3) = 0

    \Leftrightarrow m =
\frac{9}{8}

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = \frac{9}{8}.

  • Câu 12: Nhận biết

    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng \Delta:5x + 2y - 10 = 0 và trục hoành.

    Ox \cap \Delta:5x + 2y - 10 =
0\overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
5x + 2y - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .Chọn (2;0).

  • Câu 13: Nhận biết

    Tìm độ dài trục lớn và trục nhỏ của elip

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

  • Câu 14: Nhận biết

    Tìm tâm và bán kính đường tròn

    Phương trình đường tròn (C):2x^{2} + 2y^{2} + 4x + 8y + 2 = 0 có tâm và bán kính lần lượt là:

    Ta có: (C):2x^{2} + 2y^{2} + 4x + 8y + 2
= 0

    \Rightarrow (C):x^{2} + y^{2} + 2x + 4y +
1 = 0

    \left\{ \begin{matrix}
- 2a = 2 \\
- 2b = 4 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} - c = 4 >
0

    Vậy phương trình đã cho tâm và bán kính lần lượt là: I( - 1; - 2),R = 2.

  • Câu 15: Thông hiểu

    Tính góc giữa hai đường thẳng

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 16: Nhận biết

    Tìm tiêu cự trục lớn

    Cho hình elip có phương trình \frac{x^{2}}{64} + \frac{y^{2}}{36} = 1. Hình elip có tiêu cự trục lớn bằng:

    Ta có: \frac{x^{2}}{64} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a = 8 \\
b = 6 \\
\end{matrix} ight.

    Độ dài trục lớn là: 2a = 2.8 =
16

  • Câu 17: Thông hiểu

    Tìm tiêu cự của elip

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 18: Nhận biết

    Tìm phương trình tương đương

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

     Ta có: (x + 5)^{2} + (y – 2)^{2} = 25  \Leftrightarrow x^{2} + y^{2} + 10x – 4y + 4 = 0.

  • Câu 19: Thông hiểu

    Tìm tâm sai của elip

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 20: Nhận biết

    Tìm phương trình tiếp tuyến

    Phương trình tiếp tuyến d của đường tròn (C): (x + 2)^{2} + (y + 2)^{2} = 9 tại điểm M(2; 1) là:

     Tâm I(-2;-2).

    Phương trình tiếp tuyến tại điểm M(2; 1) là:

    ( - 2 - 2)(x - 2) + ( - 2 - 1)(y - 1) = 0 \Leftrightarrow 4x + 3y - 11 = 0.

     

  • Câu 21: Nhận biết

    Chọn khẳng định sai

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 22: Thông hiểu

    Viết phương trình tiếp tuyến của đường tròn

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x + 3)^{2} + (y - 5)^{2} = 10. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng - \frac{1}{3}.

    Đường tròn (C) có tâm I( - 3;5) và bán kính R = \sqrt{10}

    Tiếp tuyến d có hệ số góc k = -
\frac{1}{3} nên có dạng y = -
\frac{1}{3}x + b

    \Leftrightarrow x + 3y - 3b =
0

    Vì d là tiếp tuyến của (C) nên d(I;d) = R

    \Leftrightarrow \frac{| - 3 + 3.5 -
3b|}{\sqrt{1^{2} + 3^{2}}} = \sqrt{10}

    \Leftrightarrow |12 - 3b| = 10\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{2}{3} \\b = \dfrac{22}{3} \\\end{matrix} ight.

    Với b = \frac{2}{3} thì phương trình d là: y = - \frac{1}{3}x + \frac{2}{3}
\Rightarrow x + 3y - 2 = 0

    Với b = \frac{22}{3} thì phương trình d là: y = - \frac{1}{3}x +
\frac{22}{3} \Rightarrow x + 3y - 22 = 0

    Vậy các phương trình tiếp tuyến cần tìm là: x + 3y - 2 = 0;x + 3y - 22 = 0.

  • Câu 23: Thông hiểu

    Viết phương trình tiếp tuyến của đường tròn

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) vuông góc với đường thẳng d?

    Ta có:

    Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{2} vuông góc với d có dạng 4x - 3y + c_{2} = 0

    \Delta_{2} tiếp xúc với (C) nên d\left( I;\Delta_{2} ight) = R

    Hay \frac{\left| 4.2 - 3.3 + c_{2}
ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 5 \Leftrightarrow \left| c_{2} - 1
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
c_{2} - 1 = 25 \\
c_{2} - 1 = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{2} = 26 \\
c_{2} = - 24 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) vuông góc với (d) là: 4x -
3y + 1 = 0 hoặc 4x - 3y - 15 =
0.

  • Câu 24: Nhận biết

    Tìm tọa độ vectơ

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 25: Thông hiểu

    Viết phương trình tổng quát

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 26: Thông hiểu

    Tìm khoảng cách từ tâm đường tròn đến trục tung

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 27: Vận dụng

    Tìm m thỏa mãn điều kiện

    Cho phương trình x^{2} + y^{2} - 2(m + 1)x + 4y - 1 =
0(1). Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?

    Ta có: x^{2} + y^{2} - 2(m + 1)x + 4y - 1
= 0 ightarrow \left\{ \begin{matrix}
a = m + 1 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.

    ightarrow R^{2} = a^{2} + b^{2} - c =
(m + 1)^{2} + 5 ightarrow R_{\min} = 5 \Leftrightarrow m = -
1.

  • Câu 28: Nhận biết

    Tìm phương trình đường tròn

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 29: Vận dụng

    Tìm m để ba đường thẳng đồng quy

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 30: Nhận biết

    Tìm khẳng định đúng

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Với c^{2} = a^{2} +
b^{2} (c > 0), tâm sai của hypebol là e = \frac{c}{a}.

  • Câu 32: Nhận biết

    Tìm điểm không thuộc đường thẳng

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 34: Thông hiểu

    Tính khoảng cách từ điểm đến đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

  • Câu 35: Vận dụng

    Tìm tọa độ điểm M

    Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

     Gọi M(a;b)

    M \in \Delta \Rightarrow a+b-1=0 \Rightarrow a=1-b

    Do đó M(1-b;b).

    Ta có: MN=5 \Leftrightarrow\sqrt {{{( - 1 - 1 + b)}^2} + {{(3 - b)}^2}}  = 5\Rightarrow b =  - 1 \Rightarrow a = 2.

  • Câu 36: Vận dụng

    Tìm phương trình đường thẳng

    Đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:2x + y - 3 = 0d_{2}:x - 2y + 1 = 0 đồng thời tạo với đường thẳng d_{3}:y - 1 = 0 một góc 45^{0} có phương trình:

    \left\{ \begin{matrix}
d_{1}:2x + y - 3 = 0 \\
d_{2}:x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A(1;1) \in
\Delta.

    Ta có d_{3}:y - 1 = 0 ightarrow
{\overrightarrow{n}}_{3} = (0;1),gọi {\overrightarrow{n}}_{\Delta} = (a;b),\ \ \varphi
= \left( \Delta;d_{3} ight). Khi đó

    \frac{1}{\sqrt{2}} = \cos\varphi =
\frac{|b|}{\sqrt{a^{2} + b^{2}}.\sqrt{0 + 1}} \Leftrightarrow a^{2} +
b^{2} = 2b^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 ightarrow \Delta:x + y - 2 = 0 \\
a = - b ightarrow a = 1,\ b = - 1 ightarrow \Delta:x - y = 0 \\
\end{matrix} ight.\ .

  • Câu 37: Thông hiểu

    Tìm phương trình chính tắc của hyperbol

    Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng 12 và độ dài trục thực bằng 10.

    Ta có : \left\{ \begin{matrix}
2c = 12 \\
2a = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 6 \\
a = 5 \\
b^{2} = 11 \\
\end{matrix} ight..

    Phương trình chính tắc (H):\frac{x^{2}}{25} - \frac{y^{2}}{11} =
1.

  • Câu 38: Thông hiểu

    Viết phương trình chính tắc của Hypebol

    Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là 1420. Phương trình chính tắc của Hypebol là:

    Phương trình chính tắc của Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1

    Ta có: \left\{ \begin{matrix}
2a = 14 \\
2c = 20 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 7 \\
c = 10 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 49 \\
c^{2} = 100 \\
\end{matrix} ight.

    \Rightarrow b^{2} = c^{2} - a^{2} =
51

    Vậy phương trình chính tắc của Hypebol là: \frac{x^{2}}{49} - \frac{y^{2}}{51} =
1.

  • Câu 39: Thông hiểu

    Tìm phương trình đường tròn

    Đường tròn (C) đi qua hai điểm A(1;1), B(3;5) và có tâm I thuộc trục tung có phương trình là:

    I(0;a) ightarrow IA = IB = R
\Leftrightarrow R^{2} = 1^{2} + (a - 1)^{2} = 3^{2} + (a -
5)^{2}

    ightarrow \left\{ \begin{matrix}
a = 4 \\
I(0;4) \\
R^{2} = 10 \\
\end{matrix} ight..

    Vậy đường tròn cần tìm là: x^{2} + (y -
4)^{2} = 10.

  • Câu 40: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo