Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 2: Nhận biết

    Tìm tọa độ vectơ

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 3: Vận dụng

    Tìm phương trình đường phân giác

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA\left( \frac{7}{4};3 ight), B(1;2)C(
- 4;3). Phương trình đường phân giác trong của góc A là:

    \left\{ \begin{matrix}
A\left( \frac{7}{4};3 ight),\ B(1;2) ightarrow AB:4x - 3y + 2 = 0 \\
A\left( \frac{7}{4};3 ight),\ C( - 4;3) ightarrow AC:y - 3 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \begin{matrix}
\frac{|4x - 3y + 2|}{5} = \frac{|y - 3|}{1} \Leftrightarrow \left\lbrack
\begin{matrix}
4x + 2y - 13 = 0 ightarrow f(x;y) = 4x + 2y - 13 \\
4x - 8y + 17 = 0 \\
\end{matrix} ight.\  \\
\\
\end{matrix}

    ightarrow \left\{ \begin{matrix}
f\left( B(1;2) ight) = - 5 < 0 \\
f\left( C( - 4;3) ight) = - 23 < 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc A4x - 8y
+ 17 = 0.

  • Câu 4: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng d đi qua điểm M(6; - 10) và vuông góc với trục Oy.

    \begin{matrix}
\left\{ \begin{matrix}
M(6; - 10) \in d \\
d\bot Oy:x = 0 ightarrow {\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 6 + t \\
y = - 10 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(2; - 10) \in d \\
ightarrow d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 10 \\
\end{matrix} ight.\ . \\
\end{matrix}

  • Câu 5: Nhận biết

    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–10x - 11 = 0 là:

    (C):x^{2} + y^{2}–10x - 11 = 0
ightarrow I( - 5;0),\ R = \sqrt{25 + 0 + 11} = 6.

  • Câu 6: Vận dụng

    Viết phương trình tổng quát của đường thẳng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 7: Thông hiểu

    Tìm tiêu cự của elip

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 8: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2)¸ P(4;0)Q(0; - 2). Đường thẳng đi qua điểm A và song song với PQ có phương trình tham số là:

    Gọi d là đường thẳng qua A và song song với PQ.

    Ta có: \left\{ \begin{matrix}
A(3;2) \in d \\
{\overrightarrow{u}}_{d} = \overrightarrow{PQ} = ( - 4; - 2) = - 2(2;1)
\\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = 3 + 2t \\
y = 2 + t \\
\end{matrix} ight.

    \overset{t = - 2}{ightarrow}M( - 1;0)
\in d ightarrow d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 9: Thông hiểu

    Chọn mệnh đề đúng

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 10: Nhận biết

    Tìm phương trình chính tắc của elip

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 11: Vận dụng

    Tìm m thỏa mãn điều kiện

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:4x - 7y + m = 0 và hai điểm A(1;2), B( -
3;4). Tìm tất cả các giá trị của tham số m để d và đoạn thẳng AB có điểm chung.

    Đoạn thẳng ABd:4x - 7y + m = 0 có điểm chung khi và chỉ khi hai điểm A\ ;\ B nằm khác phía so với đường thẳng d. Ta có:

    \left( 4x_{A} - 7y_{A} + m ight)\left(
4x_{B} - 7y_{B} + m ight) \leq 0

    \Leftrightarrow (m - 10)(m - 40) \leq 0
\Leftrightarrow 10 \leq m \leq 40.

  • Câu 12: Thông hiểu

    Viết phương trình đường tròn

    Phương trình đường tròn có tâm thuộc đường thẳng \Delta:x - 2y = 0, tiếp xúc với đường thẳng \Delta':2x - y + 2 = 0 đồng thời đường tròn đi qua điểm M(1;3) là:

    Gọi tâm của đường tròn cần tìm là I(2t;t)
\in \Delta:x - 2y = 0

    Theo giả thiết, ta có:

    MI = d\left( I;\Delta^{'} ight)
\Leftrightarrow \sqrt{(2t - 1)^{2} + (t - 3)^{2}} = \frac{|2.2t - t +
2|}{\sqrt{5}}

    \Leftrightarrow \sqrt{5t^{2} - 10t + 10}= \dfrac{|3t + 2|}{\sqrt{5}}

    \Leftrightarrow 8t^{2} - 31t + 23 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\t = \dfrac{23}{8} \\\end{matrix} ight.

    Với t = 1 thì đường tròn cần tìm có tâm I(2;1), bán kính R = IM = \sqrt{5}, và có phương trình là: (x - 2)^{2} + (y - 1)^{2} = 5

    Với t = \frac{23}{8} thì đường tròn cần tìm có tâm I\left(
\frac{23}{4};\frac{23}{8} ight), bán kính R = IM = \frac{17\sqrt{5}}{8}, và có phương trình là: \left( x - \frac{23}{4}
ight)^{2} + \left( y - \frac{23}{8} ight)^{2} =
\frac{1445}{64}

    Vậy có hai đường tròn thỏa mãn yêu cầu bài toán là:

    (x - 2)^{2} + (y - 1)^{2} = 5\ và\ \left(
x - \frac{23}{4} ight)^{2} + \left( y - \frac{23}{8} ight)^{2} =
\frac{1445}{64}.

  • Câu 13: Thông hiểu

    Tìm phương trình đường tròn (C)

    Xác định phương trình đường tròn (C) tâm I( -
2;1). Biết (C) cắt đường thẳng \Delta:x - 2y + 3 = 0 tại hai điểm AB sao cho AB = 2.

    Gọi h là khoảng cách từ điểm I đến đường thẳng \Delta:x - 2y + 3 = 0. Ta có:

    h = d(I;\Delta) = \frac{| - 2 - 2 +
3|}{\sqrt{1^{2} + ( - 2)^{2}}} = \frac{1}{\sqrt{5}}

    Gọi R là bán kính đường tròn, từ giả thiết suy ra:

    R = \sqrt{h^{2} + \frac{AB^{2}}{4}} =
\sqrt{\frac{1}{5} + \frac{2^{2}}{4}} = \sqrt{\frac{6}{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 2)^{2} + (y - 1)^{2} =
\frac{6}{5}.

  • Câu 14: Nhận biết

    Chọn phương trình chính tắc của Hypebol

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?

    Phương trình Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} + b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} - \frac{y^{2}}{4} =
1.

  • Câu 15: Nhận biết

    Tìm điểm thuộc đường thẳng

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 16: Vận dụng

    Viết phương trình đường tròn

    Xác định phương trình đường tròn (C) có tâm nằm trên đường thẳng (d):x - 6y - 10 = 0 và tiếp xúc với hai đường thẳng có phương trình \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0?

    Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K(6a + 10;a). Mặt khác đường tròn tiếp xúc với hai đường thẳng \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0 nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.

    \frac{\left| 3(6a + 10) + 4a + 5
ight|}{5} = \frac{\left| 4(6a + 10) - 3a - 5 ight|}{5}

    \Leftrightarrow |22a + 35| = |21a +
35|

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = \frac{- 70}{43} \\
\end{matrix} ight.

    Với a = 0 thì K(10;0);R = 7 khi đó phương trình đường tròn là: (x - 10)^{2} + y^{2} =
49

    Với a = \frac{- 70}{43} thì K\left( \frac{10}{43};\frac{- 70}{43}
ight);R = \frac{7}{43} khi đó phương trình đường tròn là: \left( x - \frac{10}{3} ight)^{2} + \left(
y + \frac{70}{43} ight)^{2} = \left( \frac{7}{43}
ight)^{2}.

  • Câu 17: Nhận biết

    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 18: Nhận biết

    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} - 4x + 2y - 3 = 0 là:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 2y - 3 = 0 ightarrow a = 2,\ b = - 1,\ c = -
3 \\
ightarrow I(2; - 1),\ R = \sqrt{4 + 1 + 3} = 2\sqrt{2}. \\
\end{matrix}

  • Câu 19: Nhận biết

    Chọn khẳng định sai

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 20: Nhận biết

    Điền vào chỗ trống

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 21: Nhận biết

    Chọn đáp án đúng

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 22: Thông hiểu

    Tìm phương trình chính tắc của elip

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 23: Vận dụng

    Tìm a để hai đường thẳng vuông góc

    Tìm a để hai đường thẳng d_{1}:2x–4y + 1 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight. vuông góc với nhau?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:2x–4y + 1 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (1; - 2) \\
{\overrightarrow{n}}_{2} = (a + 1;a) \\
\end{matrix} ight.\ \overset{d_{1}\bot
d_{2}}{ightarrow}{\overrightarrow{n}}_{1} \cdot
{\overrightarrow{n}}_{2} = 0 \Leftrightarrow a + 1 - 2a = 0 \Leftrightarrow a =
1.

  • Câu 24: Vận dụng

    Tính độ dài MN

    Cho elip (E):\frac{x^{2}}{100} + \frac{y^{2}}{36} =
1. Qua một tiêu điểm của (E) dựng đường thẳng song song với trục Oy và cắt (E) tại hai điểm MN. Độ dài MN bằng bao nhiêu?

    Xét (E):\frac{x^{2}}{100} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a^{2} = 100 \\
b^{2} = 36 \\
\end{matrix} ight.\  \Leftrightarrow c^{2} = a^{2} - b^{2} = 100 - 36
= 64.

    Khi đó, Elip có tiêu điểm là F_{1}( - \
8;0) \Rightarrow đường thẳng d//Oy và đi qua F_{1}x =
- \ 8.

    Giao điểm của d(E) là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x = - \ 8 \\
\frac{x^{2}}{100} + \frac{y^{2}}{36} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \ 8 \\
y = \pm \ \frac{24}{5} \\
\end{matrix} ight.\ .

    Vậy tọa độ hai điểm M\left( - \
8;\frac{24}{5} ight),\ \ N\left( - \ 8; - \ \frac{24}{5} ight)
\Rightarrow MN = \frac{48}{5}.

  • Câu 25: Nhận biết

    Tìm đường thẳng vuông góc

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 26: Thông hiểu

    Tìm điều kiện của tham số m

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?

    Để phương trình đã cho là phương trình đường tròn thì:

    m^{2} + 4(m - 2)^{2} - 6 + m >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight.

    Vậy đáp án chính xác là: \left\lbrack
\begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight..

  • Câu 27: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x - 3y - 10 = 0d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight. vuông góc?

    \left\{ \begin{matrix}
d_{1}:2x - 3y - 10 = 0 ightarrow {\overrightarrow{n}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ightarrow {\overrightarrow{n}}_{2} = (4m; - 3)
ight.\  \\
\end{matrix} ight.

    \overset{d_{1}\bot
d_{2}}{ightarrow}2.4m + ( - 3).( - 3) = 0 \Leftrightarrow m = -
\frac{9}{8}.

  • Câu 28: Thông hiểu

    Xác định vị trí tương đối của hai đường thẳng

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 29: Thông hiểu

    Viết phương trình tổng quát của đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 30: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight. trùng nhau?

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight.\  ightarrow A(2; - 6) \in d_{2},\ \
{\overrightarrow{u}}_{2} = (m;1 - 2m) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{1} \\
\frac{m}{2} = \frac{1 - 2m}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 31: Thông hiểu

    Xác định phương trình đường tròn

    Viết phương trình đường tròn (C) có tâm I(
- 1;2) và tiếp xúc với đường thẳng \Delta:x - 2y + 7 = 0?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng \Delta:x - 2y + 7 = 0 nên

    R = d(I;\Delta) = \frac{| - 1 - 4 -
7|}{\sqrt{1 + 4}} = \frac{2}{\sqrt{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 1)^{2} + (y - 2)^{2} =
\frac{4}{5}.

  • Câu 32: Vận dụng

    Chọn đáp án đúng

    Viết phương trình đường tròn nội tiếp tam giác OAB, biết tọa độ A(8;0),B(0;6)?

    Ta có: OA = 8;OB = 6;AB = \sqrt{8^{2} +
6^{2}} = 10

    Mặt khác \frac{1}{2}OA.OB = p.r (vì cùng bằng diện tích tam giác ABO)

    Suy ra r = \frac{OA.OB}{OA + OB + AB} =
2

    Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ (2;2)

    Vậy phương trình đường tròn nội tiếp tam giác OAB là: (x - 2)^{2} + (y - 2)^{2} = 4

  • Câu 33: Nhận biết

    Tìm mệnh đề đúng

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Nếu c^{2} = a^{2} +
b^{2} thì (H) có các tiêu điểm là F_{1}(c;0), F_{2}( - c;0).

  • Câu 34: Nhận biết

    Xác định tâm và bán kính đường tròn

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 6x + 8y - 1 = 0. Xác định tâm và bán kính đường tròn đó?

    Ta có phương trình đường tròn: (C):x^{2}
+ y^{2} - 6x + 8y - 1 = 0 có: a =
3;b = - 4,c = - 1 nên đường tròn (C) có tâm I(3; - 4) và bán kính R = \sqrt{a^{2} + b^{2} - c} =
\sqrt{26}.

  • Câu 35: Thông hiểu

    Viết phương trình parabol (P)

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 36: Thông hiểu

    Tìm phương trình chính tắc của elip

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 37: Vận dụng

    Tìm tọa độ hai điểm P và Q

    Cho hyperbol (H):3x^{2} - 4y^{2} = 12 có hai tiêu điểm là F_{1},\ F_{2}. Tìm trên một nhánh của (H) tọa độ hai điểm P,\ Q . Biết rằng \Delta OPQ là tam giác đều.

    Ta có : (H):3x^{2} - 4y^{2} = 12
\Leftrightarrow \frac{x^{2}}{4} - \frac{y^{2}}{3} = 1.

    Gọi P\left( x_{0};y_{0} ight) \in (H)
\Rightarrow Q\left( x_{0}; - y_{0} ight) (Do (H) đối xứng với nhau qua Ox)

    \Delta OPQ đều \Leftrightarrow OP = PQ

    \Leftrightarrow 4y_{0}^{2} = x_{0}^{2} +
y_{0}^{2} \Leftrightarrow x_{0}^{2} = 3y_{0}^{2}. Thay vào (H) ta có:

    9x_{0}^{2} - 4y_{0}^{2} = 12
\Leftrightarrow \left\lbrack \begin{matrix}
y_{0} = \frac{2\sqrt{15}}{5} \\
y_{0} = - \frac{2\sqrt{15}}{5} \\
\end{matrix} ight. \Rightarrow
x_{0} = \pm \frac{6\sqrt{5}}{5}.

    Vậy P\left(
\frac{6\sqrt{5}}{5};\frac{2\sqrt{15}}{5} ight), Q\left( \frac{6\sqrt{5}}{5}; -
\frac{2\sqrt{15}}{5} ight).

  • Câu 38: Nhận biết

    Tìm tâm và bán kính đường tròn

    Xác định tâm và bán kính đường tròn (C):(x - 4)^{2} + (y + 5)^{2} = 12?

    Ta có: (C):(x - 4)^{2} + (y + 5)^{2} =
12

    Vậy đường tròn có bán kính I(4; -
5) và bán kính R =
2\sqrt{3}

  • Câu 39: Nhận biết

    Tính khoảng cách từ điểm đến đường thẳng

    Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:

     Ta có: {d_{(M,\Delta )}} = \frac{{\left| {3. - 1 - 4.1 - 3} ight|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} = 2.

  • Câu 40: Nhận biết

    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng \Delta:5x + 2y - 10 = 0 và trục hoành.

    Ox \cap \Delta:5x + 2y - 10 =
0\overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
5x + 2y - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .Chọn (2;0).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo