Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Hàm số, Đồ thị và ứng dụng

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 6 Hàm số, Đồ thị và ứng dụng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tam thức bậc hai dương khi và chỉ khi

    Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi

    Ta có: f(x) = x^{2} - 2x - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).

  • Câu 2: Nhận biết

    Chọn khẳng định đúng

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 3: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.

    Ta có a = 1 > 0, b =  − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).

  • Câu 4: Nhận biết

    Điền vào chỗ trống

    Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….

    Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến

  • Câu 5: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \sqrt{x^{2} + 2x + 3} + \frac{1}{\sqrt{5 -
2x}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\ .

    Phương trình x2 + 2x + 3 = 0 ⇔ x ∈ ⌀5 - 2x = 0 \Leftrightarrow x =
\frac{5}{2}.

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in \left( \  -
\infty;\frac{5}{2} ight).

    Vậy tập xác định của hàm số là D = \left(
\  - \infty;\frac{5}{2} ight).

  • Câu 6: Vận dụng cao

    Tìm số nghiệm nguyên dương của phương trình

    Phương trình 2x +
1 + x\sqrt{x^{2} + 2} + (x + 1)\sqrt{x^{2} + 2x + 3} = 0 có mấy nghiệm nguyên dương ?

    Đặt a = \sqrt{x^{2} + 2}\ \ ;\ b =
\sqrt{x^{2} + 2x + 3}\ \ \ \ (a,\ b > 0)\

    \Rightarrow x = \frac{b^{2} - a^{2} -
1}{2}

    Phương trình đã cho trở thành:

    \begin{matrix}
(b - a)\left\lbrack (a + b) + \frac{(a + b)^{2}}{2} + \frac{1}{2}
ightbrack = 0 \\
\Leftrightarrow a = b \Leftrightarrow x = - \frac{1}{2}. \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên dương.

  • Câu 7: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{x+2}-\sqrt{x+3}.

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{x \ge  - 2}\\{x \ge  - 3}\end{array} \Leftrightarrow x \ge  - 2} ight..

    Vậy D=[-2;+\infty).

  • Câu 8: Nhận biết

    Phương trình sau có bao nhiêu nghiệm

    Phương trình sau có bao nhiêu nghiệm \sqrt{x - 1} = \sqrt{1 - x}?

    Điều kiện xác định: \left\{
\begin{matrix}
x \geq 1 \\
x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Với x = 1thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.

  • Câu 9: Nhận biết

    Tìm tập nghiệm của phương trình

    Tìm tập nghiệm của phương trình \sqrt{4x+1}+5=0

     Nhận xét: \sqrt{4x+1} \ge 0 \Leftrightarrow \sqrt{4x+1}+5 >0

    Do đó \sqrt{4x+1}+5=0 vô lí. 

    Vậy S=\varnothing.

  • Câu 10: Nhận biết

    Chọn khẳng định đúng

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 11: Thông hiểu

    Tìm công thức hàm số bậc hai

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 12: Vận dụng cao

    Tìm số nghiệm nguyên của phương trình

    Phương trình x^{2} = \sqrt{2 - x} + 2 có mấy nghiệm nguyên ?

    Đặt t = \sqrt{2 - x}\ \ \ (t \geq
0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} = t + 2 \\
t^{2} = - x + 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
t = - x \\
t = x - 1 \\
\end{matrix} ight.

    Với t =  − x ta được \left\lbrack \begin{matrix}
x = 1 \Rightarrow t = - 1(L) \\
x = - 2 \Rightarrow t = 2(TM) \\
\end{matrix} ight.

    Với t = x − 1 ta được \left\lbrack \begin{matrix}
x = \frac{1 + \sqrt{5}}{2} \Rightarrow t = \frac{\sqrt{5} - 1}{2}(TM) \\
x = \frac{1 - \sqrt{5}}{2} \Rightarrow t = \frac{- \sqrt{5} - 1}{2}(L)
\\
\end{matrix} ight.

    Vậy phương trình có 2 nghiệm x =  − 2x = \frac{1 + \sqrt{5}}{2}.

  • Câu 13: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?

    TH1:m = 0 \Leftrightarrow - 4x - 1 = 0
\Leftrightarrow x = - \frac{1}{4}; phương trình chỉ có một nghiệm duy nhất nên loại m = 0

    TH2: m ≠ 0

    Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì

    \Delta' = (m + 2)^{2} - m(m - 1) > 0
\Leftrightarrow 5m > - 4 \Leftrightarrow m > -
\frac{4}{5}đồng thời m ∈ [ − 7; 7].

    Vậy m = {1; 2;3;4;5;6;7}→7 giá trị nguyên của m thỏa mãn.

  • Câu 14: Thông hiểu

    Tính giá trị của hàm số tại điểm

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 15: Thông hiểu

    Tìm số nghiệm của phương trình

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 16: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của aΔ.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0

  • Câu 17: Thông hiểu

    Tìm số nghiệm của phương trình

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 18: Nhận biết

    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 19: Nhận biết

    Phương trình có bao nhiêu nghiệm?

    Phương trình \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x} có bao nhiêu nghiệm?

    \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x}\Leftrightarrow \left\{ \begin{matrix}6 - 3x \geq 0 \\2x^{2} - 5x + 2 = 6 - 3x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\2x^{2} - 2x - 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight..

    Vậy phương trình có 2 nghiệm.

  • Câu 20: Nhận biết

    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 21: Nhận biết

    Chọn khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 22: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Giá trị nguyên dương lớn nhất của x để hàm số y = \sqrt{5 - 4x - x^{2}} xác định là

    Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].

    Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.

  • Câu 23: Vận dụng

    Tính số nghiệm của phương trình

    Phương trình (x -1)(x + 3) + 2(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 8 có mấy nghiệm ?

    Điều kiện: \left\lbrack \begin{matrix}x \leq - 3 \\x > 1 \\\end{matrix} ight.

    Đặt t = (x - 1)\sqrt{\frac{x + 3}{x - 1}}\Rightarrow t^{2} = (x - 1)(x + 3).

    PT đã cho trở thành:

    t^{2} + 2t - 8 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 2\ \  \\t = - 4\ \ \  \\\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 2 \\\Rightarrow (x - 1)(x + 3) = 4 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{2}(TM) \\x = - 1 - 2\sqrt{2}(L) \\\end{matrix} ight.\  \\\end{matrix}

    Với t =  − 4 ta được ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = - 4 \\\Rightarrow (x - 1)(x + 3) = 16 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{5}(L) \\x = - 1 - 2\sqrt{5}(TM) \\\end{matrix} ight.\  \\\end{matrix}

    Vậy phương trình có hai nghiệm là x = - 1+ 2\sqrt{2} ; x = - 1 -2\sqrt{5}.

  • Câu 24: Vận dụng

    Tính tổng các nghiệm của phương trình

    Tổng các nghiệm của phương trình \frac{2x^{2} + 8x + 1}{2x + 1} = 5\sqrt{x} là:

    ĐK: x ≥ 0.

    Dễ thấy x = 0 không là nghiệm của phương trình.

    Xét x ≠ 0. Khi đó phương trình tương đương với

    10x\sqrt{x} + 5\sqrt{x} = 2x^{2} + 1 +8x \Leftrightarrow 5(\sqrt{x} + \frac{1}{2\sqrt{x}}) = 2(x +\frac{1}{4x}) + 4

    Đặt t = \sqrt{x} + \frac{1}{2\sqrt{x}}\geq 2\sqrt{\sqrt{x}.\frac{1}{2\sqrt{x}}} = \sqrt{2} \Rightarrow t \geq\sqrt{2}

    Suy ra x + \frac{1}{4x} = t^{2} -1. Phương trình trở thành:

    5t = 2(t2−1) + 4 ⇔ 2t2 − 5t + 2 = 0 ⇔ t = 2 (thỏa mãn) hoặc t = \frac{1}{2} (loại)
    Với t = 2 ta có x + \frac{1}{4x} = 3 \Leftrightarrow 4x^{2} - 12x +1 = 0 \Leftrightarrow x = \frac{3 \pm 2\sqrt{2}}{2} (thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{3\pm 2\sqrt{2}}{2}.

    Tổng các nghiệm của phương trình bằng 3.

  • Câu 25: Vận dụng

    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = x + \frac{1}{x} trên khoảng (1;+∞). Khẳng định nào sau đây đúng?

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( x_{1} + \frac{1}{x_{1}} ight) - \left( x_{2} +
\frac{1}{x_{2}} ight) = \left( x_{1} - x_{2} ight) + \left(
\frac{1}{x_{1}} - \frac{1}{x_{2}} ight) = \left( x_{1} - x_{2}
ight)\left( 1 - \frac{1}{x_{1}x_{2}} ight).

    Với mọi x1x2 ∈ (1;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 1 \\
x_{2} > 1 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x_{1} > 1 \Rightarrow
\frac{1}{x_{1}.x_{1}} < 1.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = 1 - \frac{1}{x_{1}x_{2}} >
0\overset{}{ightarrow}f(x) đồng biến trên (1;+∞).

  • Câu 26: Vận dụng

    Tính giá trị T

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó (P) Chọn A.

  • Câu 27: Vận dụng cao

    Tìm giá bán phù hợp

    Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

    Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).

    Khi đó:

    Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .

    Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .

    Lợi nhuận mà doanh nghiệp thu được trong một năm là

    f(x) = (4−x)(600+200x) =  − 200x2 + 200x + 2400.

    Xét hàm số f(x) =  − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên

    Vậy \max_{\lbrack 0;4brack}f(x) = 2\ 450
\Leftrightarrow x = \frac{1}{2}.

    Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.

  • Câu 28: Nhận biết

    Tìm công thức của Parabol

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 29: Nhận biết

    Tìm điều kiện chính xác

    Cho f(x)=ax^{2}+bx+c(a≠0). Điều kiện để f(x)>0 \forall x \in \mathbb{R} là:

     Ta có: f(x)=ax^{2}+bx+c>0 \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{matrix}a>0\\ \Delta < 0\end{matrix}ight..

  • Câu 30: Vận dụng cao

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{2019}{\sqrt[3]{x^{2} - 3x + 2} -
\sqrt[3]{x^{2} - 7}}.

    Hàm số xác định khi \sqrt[3]{x^{2} - 3x +
2} - \sqrt[3]{x^{2} - 7} eq 0 \Leftrightarrow \sqrt[3]{x^{2} - 3x + 2}
eq \sqrt[3]{x^{2} - 7}

     ⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.

    Vậy tập xác định của hàm số là D = ℝ ∖ {3}.

  • Câu 31: Vận dụng

    Tìm tập xác định

    Tìm tập xác định của hàm số y = \frac{2x + 3m}{\sqrt{x^{2} + 2(1 - m)x + 2m^{2}
+ 3}}.

    ĐKXĐ: x2 + 2(1−m)x + 2m2 + 3 > 0

    Xét tam thức bậc hai f(x) = x2 + 2(1−m)x + 2m2 + 3

    Ta có \begin{matrix}
a = 1 > 0,\ \ \Delta' = (1 - m)^{2} - \left( 2m^{2} + 3 ight) \\
= - m^{2} - 2m - 2 < 0 \\
\end{matrix}

    (Vì tam thức bậc hai f(m) =  − m2 − 2m − 2am =  − 1 < 0,  Δm =  − 1 < 0 )

    Suy ra với mọi m ta có x2 + 2(1−m)x + 2m2 + 3 > 0,  ∀x ∈ ℝ.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 32: Nhận biết

    Tìm công thức của Parabol

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 33: Thông hiểu

    Tìm công thức hàm số bậc hai

    Bảng biến thiên của hàm số y =  − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?

    Hệ số a = - 2 <
0\overset{}{ightarrow} bề lõm hướng xuống.

    Ta có - \frac{b}{2a} = 1y(1) = 3. Do đó chọn .

  • Câu 34: Thông hiểu

    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 35: Thông hiểu

    Tìm hàm số bậc hai thỏa mãn

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 36: Nhận biết

    Tìm tập nghiệm của phương trình

    Phương trình \sqrt{x-1}=x-3 có tập nghiệm là:

     Ta có: \sqrt{x-1}=x-3  \Rightarrow x-1=x^2-6x+9\Leftrightarrow x^2-7x+10=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 5}\end{array}} ight..

    Thử lại x=2 thấy không thỏa mãn. Vậy S=\{5\}.

  • Câu 37: Nhận biết

    Tìm x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = \sqrt{x + 2} + \sqrt{2 - x} là:

    Điều kiện xác định của hàm số y = \sqrt{x
+ 2} + \sqrt{2 - x} là:

    \left\{ \begin{matrix}
x + 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 2 \leq x \leq 2

    Vậy tập xác định của hàm số đã cho là D =
\lbrack - 2;2brack

  • Câu 38: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.. Ta có kết quả nào sau đây đúng?

    f( - 1) = \frac{\sqrt[3]{2 - 3}}{- 1 - 2}
= \frac{1}{3}; f(2) = \frac{2.2 +
3}{2 + 1} = \frac{7}{3}.

  • Câu 39: Thông hiểu

    Giải phương trình chứa căn

    Số nghiệm của phương trình \sqrt{2x^{2}-2x+4}=\sqrt{x^{2}-x+2}

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {2{x^2} - 2x + 4 \geqslant 0} \\   {{x^2} - x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 2x + 4}  = \sqrt {{x^2} - x + 2}  \hfill \\   \Leftrightarrow 2{x^2} - 2x + 4 = {x^2} - x + 2 \hfill \\   \Leftrightarrow {x^2} - x + 2 = 0\left( {VN} ight) \hfill \\ \end{matrix}

    Do {\left( {x - \frac{1}{2}} ight)^2} + \frac{7}{4} > 0,\forall x

    Vậy phương trình vô nghiệm.

  • Câu 40: Vận dụng

    Tìm m thỏa mãn điều kiện

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10;  − 4) để đường thẳng d : y =  − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?

    Xét phương trình:  − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0

    Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là \left\{ \begin{matrix}
\Delta > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 2)^{2} + 4(m + 4) > 0 \\
- m - 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 8m + 20 > 0\ ,\ \forall m \\
m < - 4 \\
\end{matrix} ight.

    Vậy trong nửa khoảng[ − 10;  − 4)6 giá trị nguyên m.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Hàm số, Đồ thị và ứng dụng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo