Tìm tập xác định
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Đề kiểm tra 45 phút Toán 10 Chương 6 Hàm số, Đồ thị và ứng dụng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tìm tập xác định
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Tìm tọa độ trung điểm I
Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB là
Xét phương trình hoành độ giao điểm của d và (P):
mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0
Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I là
.
Giải phương trình
Tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm phương trình là:
Tìm số nghiệm nguyên của phương trình
Phương trình
có mấy nghiệm nguyên ?
Đặt . Ta có hệ phương trình:
Với t = − x ta được
Với t = x − 1 ta được
Vậy phương trình có 2 nghiệm x = − 2 và .
Tìm công thức hàm số bậc hai
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hướng lên.
Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.
Giải phương trình
Số nghiệm của phương trình
là:
Điều kiện:
Vậy phương trình đã cho có tất cả 1 nghiệm.
Tìm số nghiệm của phương trình
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Tìm tập xác định
Tập xác định của hàm số
là:
Hàm số .
Điều kiện xác định: .
Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).
Chọn khẳng định đúng
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Tìm m thỏa mãn điều kiện
Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.
Với m = 4 thì g(x) = − 1 < 0 thỏa mãn yêu cầu bài toán
Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.
Do đó
⇔ m < 4
Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.
Tính số nghiệm của phương trình
Số nghiệm của phương trình
là:
vô số.
Ta thấy x = − 3 không là nghiệm của phương trình.
Xét x ≠ − 3, phương trình
Phương trình (*)
(thỏa mãn)
Vậy phương trình đã cho có hai nghiệm x = 0 và .
Tìm công thức của Parabol
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Chọn khẳng định đúng
Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?
Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng
(2;+∞).
Tam thức bậc hai nhận giá trị không âm khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Tìm nghiệm của phương trình
Nghiệm của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn. Do đó
.
Chọn khẳng định đúng
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Chọn khẳng định sai
Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (−1;1) và (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−1;1) và (2;3).
Trên khoảng (1;2) và (3;5) đồ thị hàm số đi xuống từ trái sang phải
Hàm số nghịch biến trên khoảng (1;2) và (3;5).
Tìm công thức Parabol
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Chọn khẳng định đúng
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Phương trình có bao nhiêu nghiệm?
Phương trình
có bao nhiêu nghiệm?
.
Vậy phương trình có 2 nghiệm.
Chọn khẳng định đúng
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của a và Δ.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0
Tìm số giá trị nguyên của x
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Tìm tập xác định
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.
Phương trình
Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).
Vậy tập xác định của hàm số là D = (− 4;1).
Tìm hàm số thỏa mãn điều kiện
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Tính số nghiệm của phương trình
Số nghiệm của phương trình
là:
ĐKXĐ: 60 − 24x − 5x2 ≥ 0
Đặt , (t≥0)pt trở thành
Vậy pt ban đầu có hai nghiệm .
Tính chiều cao h của Parabol
Một chiếc cổng hình parabol có phương trình
. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

Gọi Avà Blà hai điểm ứng với hai chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình và cổng có chiều rộng d = 5 mét nên:
AB = 5 và .
Vậy chiều cao của cổng làmét.
Tìm x
Cho hàm số:
. Tìm x để ![]()
Ta có:
Vậy x = 3 hoặc x = 0
Chọn khẳng định đúng
Đồ thị hàm số y = x2 − 6|x| + 5:
Ta có:
Đồ thị (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần
Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung
Phần đồ thị (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung
Ta có đồ thị (C) như hình vẽ

Vậy đồ thị (C) có trục đối xứng có phương trình x = 0.
Tìm công thức hàm số bậc hai
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Tìm điểm thuộc đồ thị
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Chọn kết luận đúng
Cho tam thức bậc hai
. Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Tìm m thỏa mãn điều kiện
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}.
Vậy có 4 giá trị nguyên của m.
Tìm tất cả các giá trị m nguyên dương
Cho parabol như hình vẽ:

Có bao nhiêu giá trị nguyên của tham số
với
để phương trình
có hai nghiệm
phân biệt?
Ta có:
Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số và
Do đó phương trình (*) có có hai nghiệm phân biệt khi và chỉ khi .
Mặt khác suy ra có 980 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Chọn đáp án sai
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Tìm số nghiệm của phương trình
Số nghiệm của phương trình
là
ĐK x ≥ 3.
.
Vậy phương trình có một nghiệm.
Tính giá trị của P
Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng
. Tính tích P = ab.
Vì (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng nên ta có hệ
(thỏa mãn a > 1) hoặc
(loại).
Suy ra P = ab = 16.12 = 192.
Tìm bảng xét dấu của tam thức bậc hai
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức
là:
Xét biếu thức có
và nghiệm là
Ta có bảng xét dấu như sau:

Số nghiệm thực của phương trình là
Số nghiệm thực của phương trình
là
ĐK: ,
.
Tính giá trị a - b
Tìm điểm M(a;b) với a < 0 nằm trên Δ : x + y − 1 = 0 và cách N(−1;3) một khoảng bằng 5. Giá trị của a − b là
.
Ta có: MN = 5 ⇒ MN2 = (−1−t)2 + (2+t)2 = 25
⇔ 2t2 + 6t − 20 = 0
⇒ M(−5;6) ⇒ a − b = − 11
Tìm số nghiệm của phương trình
Phương trình
có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: