Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm nghiệm của hệ bất phương trình

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 2: Thông hiểu

    Tìm mốt

    Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

    Tìm mốt của mẫu số liệu này.

    Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.

  • Câu 3: Vận dụng cao

    Tính tổng các vecto

    Cho hình vuông ABCD, dựng các hình vuông A_{1}A_{2}A_{3}A_{4};B_{1}B_{2}B_{3}B_{4};C_{1}C_{2}C_{3}C_{4};D_{1}D_{2}D_{3}D_{4} với A,B,C,D là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

    Biết các hình vuông nhỏ có kích thước 1cm
\times 1cm. Tính độ dài vectơ:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    = \overrightarrow{B_{2}B_{1}} +
\overrightarrow{C_{3}C_{2}} + \overrightarrow{D_{2}D_{3}} +
\overrightarrow{A_{1}E} + \overrightarrow{EA_{4}} =
\overrightarrow{X_{1}Z_{1}}

    \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    = \overrightarrow{B_{3}B_{2}} +
\overrightarrow{C_{4}C_{3}} + \overrightarrow{D_{1}D_{4}} +
\overrightarrow{A_{2}F} + \overrightarrow{FA_{1}} =
\overrightarrow{X_{2}Z_{2}}

    \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    = \overrightarrow{B_{4}B_{3}} +
\overrightarrow{C_{1}C_{4}} + \overrightarrow{D_{2}D_{1}} +
\overrightarrow{A_{3}K} + \overrightarrow{KA_{2}} =
\overrightarrow{X_{3}Z_{3}}

    Khi đó tổng vecto cần tính có kết quả là:

    |\overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}|

    = \left| \overrightarrow{X_{1}Z_{1}} +
\overrightarrow{X_{2}Z_{2}} + \overrightarrow{X_{3}Z_{3}} ight| =
\left| \overrightarrow{MN} + \overrightarrow{MQ} ight| = \left|
\overrightarrow{MP} ight| = \sqrt{34}

  • Câu 4: Thông hiểu

    Tìm câu sai

    Cho định lí "\forall x \in X,P(x)
\Rightarrow Q(x)". Chọn khẳng định không đúng.

    Định lí "\forall x \in X,P(x)
\Rightarrow Q(x)" có thể phát biểu bằng một trong các cách sau:

    Nếu P(x) thì Q(x)

    P(x) là điều kiện đủ để có Q(x)

    Q(x) là điều kiện cần (ắt có) để có P(x)

    P(x) là giả thiết, Q(x) là kết luận.

  • Câu 5: Nhận biết

    Xác định số mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề?

    (I) Hãy mở cửa ra!                            (II) Số 25 chia hết cho 8.

    (III) Số 17 là số nguyên tố.               (IV) Bạn thích ăn phở không?

    Các câu (III) và (II) là mệnh đề.

  • Câu 6: Nhận biết

    Chọn công thức đúng

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 7: Nhận biết

    Có bao nhiêu vectơ thỏa mãn

    Cho ba điểm phân biệt M,N,P. Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho?

    Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho là

    \overrightarrow{MN},\overrightarrow{NM},\overrightarrow{MP},\overrightarrow{PM},\overrightarrow{NP},\overrightarrow{PN}.

  • Câu 8: Nhận biết

    Tính cosin của góc

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 9: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho tam giác ABCAB = 2;AC = 3;\widehat{BAC} = 60^{0}. Gọi I là trung điểm của đoạn thẳng BC. Điểm J thuộc đoạn AC thỏa mãn 12AJ = 7AC. Khi đó:

    a) \overrightarrow{AB}.\overrightarrow{AC} =
4. Sai||Đúng

    b) \overrightarrow{AI} =
\frac{3}{2}\overrightarrow{AB} +
\frac{3}{2}\overrightarrow{AC}. Sai||Đúng

    c) \overrightarrow{BJ} = -
\overrightarrow{AB} + \frac{7}{12}\overrightarrow{AC}. Đúng||Sai

    d) AI\bot BJ. Đúng||Sai

    Đáp án là:

    Cho tam giác ABCAB = 2;AC = 3;\widehat{BAC} = 60^{0}. Gọi I là trung điểm của đoạn thẳng BC. Điểm J thuộc đoạn AC thỏa mãn 12AJ = 7AC. Khi đó:

    a) \overrightarrow{AB}.\overrightarrow{AC} =
4. Sai||Đúng

    b) \overrightarrow{AI} =
\frac{3}{2}\overrightarrow{AB} +
\frac{3}{2}\overrightarrow{AC}. Sai||Đúng

    c) \overrightarrow{BJ} = -
\overrightarrow{AB} + \frac{7}{12}\overrightarrow{AC}. Đúng||Sai

    d) AI\bot BJ. Đúng||Sai

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

    Hình vẽ minh họa

    a) Ta có: \overrightarrow{AB} \cdot
\overrightarrow{AC} = AB \cdot AC\cos\widehat{BAC} = 2a \cdot 3a \cdot
cos60^{0} = 3a^{2}

    b) Do I là trung điểm BC nên \overrightarrow{AI} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    c) Ta có: \overrightarrow{BJ} =
\overrightarrow{BA} + \overrightarrow{AJ} = - \overrightarrow{AB} +
\frac{7}{12}\overrightarrow{AC}

    d) Ta có:

    \overrightarrow{AI} \cdot
\overrightarrow{BJ} = \frac{1}{2}(\overrightarrow{AB} +
\overrightarrow{AC})\left( - \overrightarrow{AB} +
\frac{7}{12}\overrightarrow{AC} \right)

    = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB}  \cdot \overrightarrow {AC}  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)

    = \frac{1}{2}\left( - 4a^{2} +
\frac{7}{12} \cdot 3a^{2} - 3a^{2} + \frac{7}{12} \cdot 9a^{2} \right) =
0

    Vậy AI\bot BJ

  • Câu 10: Vận dụng

    Tính tích vô hướng

    Cho 2 vectơ đơn vị \overrightarrow{a}\overrightarrow{b} thỏa\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2. Hãy xác định \left(
3\overrightarrow{a} - 4\overrightarrow{b} ight)\left(
2\overrightarrow{a} + 5\overrightarrow{b} ight).

    Ta có: \left| \overrightarrow{a} ight|
= \left| \overrightarrow{b} ight| = 1\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2 \Leftrightarrow \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = 4 \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 1 .

    Suy ra \left( 3\overrightarrow{a} -4\overrightarrow{b} ight)\left( 2\overrightarrow{a} +5\overrightarrow{b} ight)= 6{\overrightarrow{a}}^{2} -20{\overrightarrow{b}}^{2} + 7\overrightarrow{a}.\overrightarrow{b} = -7.

  • Câu 11: Vận dụng

    Xác định các giá trị nguyên của tham số m

    Cho A = \left\{ x \in R\backslash|x - m|
\leq 25 \right\}; B = \left\{ x \in
R\backslash|x| \geq 2020 \right\}. Có bao nhiêu giá trị nguyên m thỏa A \cap B = \varnothing

    Ta có: A = \left\{ x \in R||x - m| \leq
25 \right\} \Rightarrow A = \lbrack
m - 25;m + 25\rbrack

    B = \left\{ x \in R||x| \geq 2020
\right\} \Rightarrow B = ( -
\infty; - 2020\rbrack \cup \lbrack 2020; + \infty)

    Để A \cap B = \varnothing thì - 2020 < m - 25 < m + 25 <
2020(1)

    Khi đó (1) \Leftrightarrow \left\{
\begin{matrix}
m - 25 > - 2020 \\
m + 25 < 2020 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 1995 \\
m < 1995 \\
\end{matrix} \right.\  \Rightarrow - 1995 < m < 1995.

    Vậy có 3989 giá trị nguyên m thỏa mãn.

  • Câu 12: Nhận biết

    Tìm đẳng thức sai

    Trong các đẳng thức sau đây, đẳng thức nào sai?

    Vi \sin60^{0} + \cos60^{0} =\frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2} \neq1 suy ra đẳng thức sai là: \sin60^{0} + \cos60^{0} = 1.

  • Câu 13: Thông hiểu

    Tính độ dài của vectơ

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 15: Nhận biết

    Khẳng định nào sau đây là đúng?

    Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{a} =
\frac{5}{4}\overrightarrow{b}\overset{}{ightarrow}\overrightarrow{a},\
\overrightarrow{b} cùng hướng.

  • Câu 16: Nhận biết

    Liệt kê số phần tử của tập hợp

    Hãy liệt kê các phần tử của tập X =
\left\{ x\mathbb{\in N}\left| (x + 2)\left( 2x^{2} - 5x + 3 \right) = 0
\right.\  \right\}.

    Ta có (x + 2)\left( 2x^{2} - 5x + 3
\right) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2\mathbb{\notin N} \\
x = 1\mathbb{\in N} \\
x = \frac{3}{2}\mathbb{\notin N} \\
\end{matrix} \right. nên X =
\left\{ 1 \right\}.

  • Câu 17: Vận dụng cao

    Tìm số học sinh thỏa mãn yêu cầu

    Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa, biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong 3 môn Toán, Lý, Hóa?

    Gọi T, L, H lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa.

    Khi đó tương tự Ví dụ 13 ta có công thức:

    A black background with a black and white logoDescription automatically generated

    |T \cup L \cup H| = |T| + |L| + |H| - |T
\cap L| - |L \cap H| - |H \cap T| + |T \cap L \cap H|

    \Leftrightarrow 45 = 25 + 23 + 20 - 11 -
8 - 9 + |T \cap L \cap H| \Leftrightarrow |T \cap L \cap H| =
5

    Vậy có 5 học sinh giỏi cả 3 môn.

  • Câu 18: Nhận biết

    Chọn đẳng thức đúng

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 19: Thông hiểu

    Tính độ dài cạnh AC

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 20: Vận dụng

    Tìm giá trị nhỏ nhất

    Giá trị nhỏ nhất của biểu thức F = y - x trên miền xác định bởi hệ \left\{ \begin{matrix}
y - 2x \leq 2 \\
2y - x \geq 4 \\
x + y \leq 5 \\
\end{matrix} ight. là:

    Miền nghiệm của hệ \left\{ \begin{matrix}
y - 2x \leq 2 \\
2y - x \geq 4 \\
x + y \leq 5 \\
\end{matrix} ight. là miền trong của tam giác ABC kể cả biên

    Ta thấy F = y - x đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C.

    Tại A(0;\ 2) thì F = 2.

    Tại B(1;\ 4) thì F = 3

    Tại A(2;\ 3) thì F = 1.

    Vậy \min F = 1 khi x = 2, y =
3.

  • Câu 21: Vận dụng cao

    Chọn đáp án đúng

    Tam giác nhọn ABCAC = b,\ BC = a, BB' là đường cao kẻ từ B\widehat{CBB'} = \alpha. Bán kính đường tròn ngoại tiếp R của tam giác ABC được tính theo a,\ b\alpha là:

    Xét tam giác BB'C vuông tại B',\sin\widehat{CBB'} = \frac{B'C}{BC}\Rightarrow B'C = a.\sin\alpha.

    AB' + B'C = AC

    \Leftrightarrow AB' = b -a.\sin\alphaB{B'}^{2} =a^{2}.\cos^{2}\alpha.

    Tam giác ABB' vuông tại B', có:

    AB = \sqrt{B{B'}^{2} + A{B'}^{2}}= \sqrt{(b - a.\sin\alpha)^{2} + a^{2}.\cos^{2}\alpha}

    = \sqrt{b^{2} - 2ab.\sin\alpha +a^{2}\sin^{2}\alpha + a^{2}\cos^{2}\alpha}

    = \sqrt{a^{2} + b^{2} -
2ab\sin\alpha}.

    Bán kính đường tròn ngoại tiếp cần tính là

    \frac{AB}{\sin\widehat{ACB}} = 2R\Leftrightarrow R = \frac{\sqrt{a^{2} + b^{2} -2ab\sin\alpha}}{2\cos\alpha}

  • Câu 22: Thông hiểu

    Tìm số trung bình cộng

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 23: Vận dụng

    Tìm tọa độ điểm A

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 24: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 6;8;10 có bán kính đường tròn ngoại tiếp bằng bao nhiêu?

    Ta có: 6^{2} + 8^{2} = 10^{2} \Rightarrow
R = \frac{10}{2} = 5. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 25: Vận dụng cao

    Xác định k để ba điểm thẳng hàng

    Cho tam giác ABC. Lấy các điểm M,N sao cho \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0};2\overrightarrow{NA} + 3\overrightarrow{NC} =
\overrightarrow{0}\overrightarrow{BC} =
k\overrightarrow{BP}. Xác định k để ba điểm M,N,P thẳng hàng.

    Ta có:

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} =
\frac{3}{5}\overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    \overrightarrow{NP} =
\overrightarrow{NC} + \overrightarrow{CP}

    = \frac{2}{5}\overrightarrow{AC} -
\left( \overrightarrow{BP} - \overrightarrow{BC} ight)

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\overrightarrow{BC}

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\left( \overrightarrow{AC} -
\overrightarrow{AB} ight)

    = \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB}

    Để ba điểm M,N,Pthẳng hàng thì \exists m\mathbb{\in R}:\overrightarrow{NP}
= m\overrightarrow{MN} hay

    \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB} = \frac{3m}{5}\overrightarrow{AC} -
\frac{m}{2}\overrightarrow{AB}

    \left\{ \begin{matrix}\dfrac{1}{k} - \dfrac{2}{5} = \dfrac{3m}{5} \\\dfrac{1}{k} - 1 = - \dfrac{m}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 4 \\k = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 26: Thông hiểu

    Tìm mệnh đề đúng

    Cho tam giác ABC, với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Xét các đáp án:

    • Đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    • Đáp án \overrightarrow{MA} +
\overrightarrow{MB} = \overrightarrow{AB}. và đáp án \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{MC}.. Ta có \overrightarrow{MA} + \overrightarrow{MB} =
2\overrightarrow{MN} (với điểm N là trung điểm của AB).

    • Đáp án \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AM}. Ta có \overrightarrow{AB} + \overrightarrow{AC} =
2\overrightarrow{AM}.

  • Câu 27: Thông hiểu

    Tìm m để hai vecto vuông góc

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{a} = (5;m - 7)\overrightarrow{b} = (m + 1;3) với m\mathbb{\in R}. Tìm giá trị của tham số m để \overrightarrow{a}\bot\overrightarrow{b}?

    Ta có:

    \overrightarrow{a}\bot\overrightarrow{b}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{0}

    \Leftrightarrow 5(m - 1) + 3.(m - 7) = 0
\Leftrightarrow m = 2

    Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.

  • Câu 28: Thông hiểu

    Viết số gần đúng

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 29: Nhận biết

    Tính số trung vị của dãy số liệu

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 30: Thông hiểu

    Tìm hợp của hai tập hợp A và B

    Cho hai tập hợp A = \left\{ x\mathbb{\in
R}\left| 2x^{2} - 3x + 1 = 0 \right.\  \right\},B = \left\{ x\mathbb{\in
N}\left| 3x + 2 < 10 \right.\  \right\} khi đó:

    Cách 1: Giải phương trình 2x^{2} - 3x + 1
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{1}{2} \\
\end{matrix} \right.. Mà x\mathbb{\in R} nên A = \left\{ \frac{1}{2};1 \right\}

    Giải bất phương trình 3x + 2 < 10
\Leftrightarrow x < \frac{8}{3}. mà x\mathbb{\in N} nên chọn B = \left\{ 0;1;2 \right\}

    Giải bất phương trình A \cup B = \left\{
0;1;\frac{1}{2};2 \right\}.

    Cách 2: Ta thử từng phần tử của các đáp án, nếu thỏa yêu cầu bài toán của cả tập A hoặc Bthì đó là đáp án đúng.

  • Câu 31: Nhận biết

    Tính diện tích tam giác

    Cho \Delta ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông:

    S = \sqrt{p(p - a)(p - b)(p -
c)}= \sqrt{12(12 - 6)(12 - 8)(12 - 10)} =
24.

  • Câu 32: Nhận biết

    Xét tính đúng sai của các khẳng định

    Cho hình thang cân ABCD với hai đáy là AB,CD và có hai đường chéo cắt nhau tại O

    a) Hai vectơ cùng hướng với \overrightarrow{AO}\overrightarrow{AC},\overrightarrow{OC}. Đúng||Sai

    b) Hai vectơ ngược hướng với \overrightarrow{AB}\overrightarrow{BA},\overrightarrow{CD}. Đúng||Sai

    c) Hai vectơ \overrightarrow{AD}\overrightarrow{BC} có độ dài không bằng nhau. Sai||Đúng

    d) \left| \overrightarrow{AC} \right| =
\left| \overrightarrow{BD} \right|. Đúng||Sai

    Đáp án là:

    Cho hình thang cân ABCD với hai đáy là AB,CD và có hai đường chéo cắt nhau tại O

    a) Hai vectơ cùng hướng với \overrightarrow{AO}\overrightarrow{AC},\overrightarrow{OC}. Đúng||Sai

    b) Hai vectơ ngược hướng với \overrightarrow{AB}\overrightarrow{BA},\overrightarrow{CD}. Đúng||Sai

    c) Hai vectơ \overrightarrow{AD}\overrightarrow{BC} có độ dài không bằng nhau. Sai||Đúng

    d) \left| \overrightarrow{AC} \right| =
\left| \overrightarrow{BD} \right|. Đúng||Sai

    a) Đúng

    Hai vectơ cùng hướng với \overrightarrow{AO}\overrightarrow{AC},\overrightarrow{OC}.

    b) Đúng

    Hai vectơ ngược hướng với \overrightarrow{AB}\overrightarrow{BA},\overrightarrow{CD}.

    c) Sai

    \left| \overrightarrow{AD} \right| =
\left| \overrightarrow{BC} \right|

    d) Đúng

    \left| \overrightarrow{AC} \right| =
\left| \overrightarrow{BD} \right|

  • Câu 33: Nhận biết

    Tìm điểm thuộc miền nghiệm của hệ

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 34: Thông hiểu

    Chọn đáp án đúng

    Cho tập hợp A = \lbrack m;m + 2\rbrack,B
= \lbrack 1;3). Điều kiện để A \cap
B = \varnothing là:

    Ta có:

    A \cap B = \varnothing \Leftrightarrow
\left\lbrack \begin{matrix}
m \geq 3 \\
m + 2 < 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
m \geq 3 \\
m < - 1 \\
\end{matrix} \right.

  • Câu 35: Thông hiểu

    Chọn khẳng định sai

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 36: Nhận biết

    Cặp số (2; 3) không là nghiệm của bất phương trình nào

    Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

    Xét đáp án x + y < 0 

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0 

    Vậy cặp số (2; 3) không là nghiệm của bất phương trình.

    Xét đáp án x + y > 0

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án x - y < 0

    Thay x=2;y=3 ta được: 2 - 3 = -1 < 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án 2x - y > 0

    Thay x=2;y=3 ta được: 2.2 - 3 = 1 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

  • Câu 37: Thông hiểu

    Tính giá trị 5m-3n

    Cho tam giác ABC có AK, BM là trung tuyến. Cho \overrightarrow{AB} =
m\overrightarrow{AK} + n\overrightarrow{BM}. Tính 5m - 3n.

    \overrightarrow{AB} = \overrightarrow{AK}+ \overrightarrow{KB} = \overrightarrow{AK} + \overrightarrow{KM} +\overrightarrow{MB}= \overrightarrow{AK} - \overrightarrow{BM} -\frac{1}{2}\overrightarrow{AB}

    \Leftrightarrow \overrightarrow{AB} =
\frac{2}{3}\overrightarrow{AK} -
\frac{2}{3}\overrightarrow{BM}

    5m - 3n = 5.\frac{2}{3} + 3.\frac{2}{3} =
\frac{16}{3} .

  • Câu 38: Vận dụng

    Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?

    Tam giác ABC vuông tại A, đường cao AH = 32\ \ cm. Hai cạnh ABAC tỉ lệ với 34. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?

    Do tam giác ABC vuông tại A, có tỉ lệ 2 cạnh góc vuông AB:AC3:4 nên AB là cạnh nhỏ nhất trong tam giác.

    Ta có \frac{AB}{AC} = \frac{3}{4}
\Rightarrow AC = \frac{4}{3}AB.

    Trong \Delta ABCAH là đường cao

    \Rightarrow \frac{1}{AH^{2}} =
\frac{1}{AB^{2}} + \frac{1}{AC^{2}} = \frac{1}{AB^{2}} + \frac{1}{\left(
\frac{4}{3}AB^{2} ight)}

    \Leftrightarrow \frac{1}{32^{2}} =
\frac{1}{AB^{2}} + \frac{9}{16AB^{2}} \Rightarrow AB = 40.

  • Câu 39: Vận dụng cao

    Tìm giá trị lớn nhất

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 40: Thông hiểu

    Tính cosin góc A

    Cho tam giác ABCA(1;2), B( -
1;1), C(5; - 1).Tính \cos A?

    Ta có: \overrightarrow{AB} = ( - 2; -
1), \overrightarrow{AC} = (4; -
3)

    Suy ra \cos A =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} = \frac{( - 2).4 + ( - 1).( - 3)}{\sqrt{( - 2)^{2}
+ ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}} = \frac{- 5}{\sqrt{5}\sqrt{25}}
= - \frac{1}{\sqrt{5}}.

  • Câu 41: Thông hiểu

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 3x - 5y > 11 không chứa điểm nào sau đây?

    Xét điểm (1; - 3). Ta có: - 3.1 - 5.3 = - 18 > 11 không thỏa mãn. Do đó (1;3) không thuộc miền nghiệm của bất phương trình - 3x - 5y >
11.

  • Câu 42: Nhận biết

    Chọn phương án thích hợp

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “3 là số tự nhiên”?

    Đáp án cần tìm là: 3\mathbb{\in
N}.

  • Câu 43: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Gọi AN,\ CM là các đường trung tuyến của tam giácABCG là trọng tâm.

    Xét tính đúng sai của các mệnh đề sau:

    a) \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC}\ . Sai||Đúng

    b) \overrightarrow{CM} =
\frac{3}{2}\overrightarrow{GC}\ . Sai||Đúng

    c) \overrightarrow{MN} =
\frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA})\ . Đúng||Sai

    d) \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}. Đúng||Sai

    Đáp án là:

    Gọi AN,\ CM là các đường trung tuyến của tam giácABCG là trọng tâm.

    Xét tính đúng sai của các mệnh đề sau:

    a) \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC}\ . Sai||Đúng

    b) \overrightarrow{CM} =
\frac{3}{2}\overrightarrow{GC}\ . Sai||Đúng

    c) \overrightarrow{MN} =
\frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA})\ . Đúng||Sai

    d) \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}. Đúng||Sai

    Hình vẽ minh họa

    a) Theo tính chất trung điểm đoạn thẳng BC ta có \overrightarrow{AN} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) nên mệnh đề sai.

    b) Vì G là trọng tâm tam giác ABC nên \overrightarrow{CM} =
\frac{3}{2}\overrightarrow{CG} suy ra mệnh đề sai.

    c) Do M, N lần lượt là trung điểm của cạnh ABBC nên ta có:

    \overrightarrow{MN} =
\frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\left( \overrightarrow{BC} -
\overrightarrow{BA} \right) hay mệnh đề đúng

    d) Ta có:

    \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} \right) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +
\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =
\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}. Vậy mệnh đề d) đúng

  • Câu 44: Nhận biết

    Tính phương sai

    Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

  • Câu 45: Thông hiểu

    Tìm độ lệch chuẩn của mẫu số liệu

    Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:

    Lớp

    10A

    10B

    10C

    10D

    10E

    Sĩ số

    40

    43

    45

    41

    46

    Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{40 + 43 + 45 + 42 +
46}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(40 - 43)^{2} + (43 -
43)^{2} + (45 - 43)^{2} + (41 - 43)^{2} + (46 - 43)^{2}}{5} =
5,2

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} = 2,28

    Vậy độ lệch chuẩn của mẫu số liệu là 2,28.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo