Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm vectơ thỏa mãn

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 2: Thông hiểu

    Tìm giá trị của n

    Cho bảng tần số như sau:

    Giá trị

    x1

    x2

    x3

    x4

    x5

    x6

    Tần số

    15

    9n - 1

    12

    n^{2} + 7

    10

    17

    Tìm n để M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4 là hai mốt của bảng tần số trên.

    Ta có: 

    M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4

    \begin{matrix}   \Rightarrow 9n - 1 = {n^2} + 7,\left( {n > 2} ight) \hfill \\   \Leftrightarrow {n^2} - 9n + 8 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   {n = 8\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy n = 8.

     

  • Câu 3: Thông hiểu

    Tính diện tích tam giác

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 4: Vận dụng cao

    Tìm tập hợp điểm M thỏa mãn

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

  • Câu 5: Thông hiểu

    Tìm phương sai của mẫu số liệu

    Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:

    Học sinh

    An

    Hoa

    Tuấn

    Hùng

    Quân

    Linh

    Điểm

    9

    8

    7

    10

    8

    6

    Tìm phương sai của mẫu số liệu?

    Ta có: N = 6

    Điểm trung bình của các học sinh trong bảng số liệu là:

    \overline{x} = \frac{9 + 8 + 7 + 10 + 8
+ 6}{6} = 8

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    9

    9 – 8 = 1

    1

    8

    8 – 8 = 0

    0

    7

    7 – 8 = -1

    1

    10

    10 – 8 = 2

    4

    8

    8 – 8 = 0

    0

    6

    6 – 8 = -2

    4

    Tổng

    10

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{10}{6} =
\frac{5}{3}

    Vậy phương sai cần tìm là \frac{5}{3}.

  • Câu 6: Nhận biết

    Tìm phát biểu sai

    Phát biểu nào là sai?

    Ta có : \overrightarrow{AB} =
\overrightarrow{CD} thì \left\lbrack \begin{matrix}
AB//CD \\
AB \equiv CD
\end{matrix} \right..

    Vậy đáp án sai là : « Nếu \overrightarrow{AB} = \overrightarrow{CD} thì A,B,C,D thẳng hàng ».

  • Câu 7: Nhận biết

    Tìm giao của hai tập hợp

    Tập ( - \infty; - 3) \cap \lbrack -
5;2) bằng

    Ta có ( - \infty; - 3) \cap \lbrack -
5;2) = \lbrack - 5; - 3).

  • Câu 8: Nhận biết

    Tính độ dài bán kính đường tròn ngoại tiếp

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 9: Nhận biết

    Tìm bất phương trình bậc nhất hai ẩn

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    Theo định nghĩa thì x + y \geq 0 là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.

  • Câu 10: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Cho tam giác ABCG là trọng tâm. Mệnh đề nào sau đây đúng?

    Gọi E là trung điểm của AC = > \overrightarrow{BA} +
\overrightarrow{BC} = 2\ \overrightarrow{BE}. (1)G là trọng tâm của tam giác ABC = >
\overrightarrow{BE} = \frac{3}{2}\overrightarrow{BG}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{BA} + \overrightarrow{BC} =
2.\frac{3}{2}\overrightarrow{BG} = 3\ \overrightarrow{BG}.

  • Câu 11: Thông hiểu

    Tìm sai số tuyệt đối

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 12: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
3x + y - 2 \geq 0 \\
x + 3y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
3.0 + 1 - 2 \geq 0 \\
0 + 3.1 + 1 \leq 0 \\
\end{matrix} ight.. Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
3.1 - 1 - 2 \geq 0 \\
1 + 3. - 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 13: Thông hiểu

    Tìm khẳng định sai

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai ?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC.

    Suy ra MN là đường trung bình của tam giác ABC \Rightarrow MN =
\frac{1}{2}BC.

    \overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 14: Thông hiểu

    Xác định số khẳng định đúnga

    Cho tam giác đều ABC cạnh a, với các đường cao AH,BK; vẽ\
HI\bot AC. Cho các khẳng định sau:

    a) \overrightarrow{BA}.\overrightarrow{BC} =
2\overrightarrow{BA}.\overrightarrow{BH}.

    b) \overrightarrow{CB}.\overrightarrow{CA} =
4\overrightarrow{CB}.\overrightarrow{CI}.

    c) \left( \overrightarrow{AC} -
\overrightarrow{AB} \right).\overrightarrow{BC} =
2\overrightarrow{BA}.\overrightarrow{BC}.

    Có bao nhiêu câu nào sau đây đúng?

    Khẳng định a):

    \overrightarrow{BC} =
2\overrightarrow{BH} \Rightarrow \overrightarrow{BA}.\overrightarrow{BC}
= 2\overrightarrow{BA}.\overrightarrow{BH} nên đẳng thức ở phương án A là đúng.

    Khẳng định b):

    \overrightarrow{CA} =
4\overrightarrow{CI} \Rightarrow \overrightarrow{CB}.\overrightarrow{CA}
= 4\overrightarrow{CB}.\overrightarrow{CI} nên đẳng thức ở phương án B là đúng.

    Khẳng định c):

    \left. \ \begin{matrix}
\left( \overrightarrow{AC} - \overrightarrow{AB}
\right).\overrightarrow{BC} = \overrightarrow{BC}.\overrightarrow{BC} =
a^{2} \\
2\overrightarrow{BA}.\overrightarrow{BC} = 2.a.a.\frac{1}{2} = a^{2}
\end{matrix} \right\}\Rightarrow \left( \overrightarrow{AC} -
\overrightarrow{AB} \right).\overrightarrow{BC} =
2\overrightarrow{BA}.\overrightarrow{BC} nên đẳng đúng

    Vậy cả 3 khẳng định đều đúng.

  • Câu 15: Vận dụng

    Tính giá trị nhỏ nhất của biểu thức F

    Giá trị nhỏ nhất của biểu thức F(x;y) = y – x trên miền xác định bởi hệ: \left\{\begin{matrix}y-2x\leq 2\\ 2y-x\geq4\\x+y\leq 5 \end{matrix}ight. là:

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}y-2x\leq 2\\ 2y-x\geq4\\x+y\leq 5 \end{matrix}ight.:

    Miền nghiệm của hệ là tam giác ABC

    Ta có: \left\{\begin{matrix}y-2x\leq 2\\ 2y-x\geq4\\ \end{matrix}ight. \Rightarrow A(0;2) ; \left\{\begin{matrix} 2y-x\geq4\\x+y\leq 5 \end{matrix}ight. \Rightarrow B(2;3)\left\{\begin{matrix}y-2x\leq 2\\x+y\leq 5 \end{matrix}ight. \Rightarrow C(1;4).

    Giá trị nhỏ nhất của F(x; y) = y-x đạt được tại 1 trong 3 đỉnh tam giác ABC.

    Với A(0;2) suy ra F=2-0=2.

    Với B(2;3) suy ra F=3-2=1.

    Với C(1;4) suy ra F=4-1=3.

    Vậy giá trị nhỏ nhất F=1 đạt tại x=2;y=3.

  • Câu 16: Thông hiểu

    Xác định câu đúng

    Cho 3 điểm A,B,C không thẳng hàng, M là điểm bất kỳ. Mệnh đề nào sau đây đúng?

    Ta có 3 điểm A,B,C không thẳng hàng, M là điểm bất kỳ.

    Suy ra \overrightarrow{MA},\overrightarrow{MB},\overrightarrow{MC} không cùng phương \Rightarrow \forall
M,\overrightarrow{MA} \neq \overrightarrow{MB} \neq
\overrightarrow{MC}.

  • Câu 17: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho góc \alpha thỏa \cot\alpha = \frac{3}{4}0^{O} < \alpha < 90^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\frac{1}{sin^{2}\alpha} = 1 + cot^{2}\alpha = 1 + \left( \frac{3}{4}
ight)^{2} = \frac{25}{16} \\
0{^\circ} < \alpha < 90{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{4}{5}.

  • Câu 18: Vận dụng cao

    Chọn đáp án đúng

    Tam giác nhọn ABCAC = b,\ BC = a, BB' là đường cao kẻ từ B\widehat{CBB'} = \alpha. Bán kính đường tròn ngoại tiếp R của tam giác ABC được tính theo a,\ b\alpha là:

    Xét tam giác BB'C vuông tại B',\sin\widehat{CBB'} = \frac{B'C}{BC}\Rightarrow B'C = a.\sin\alpha.

    AB' + B'C = AC

    \Leftrightarrow AB' = b -a.\sin\alphaB{B'}^{2} =a^{2}.\cos^{2}\alpha.

    Tam giác ABB' vuông tại B', có:

    AB = \sqrt{B{B'}^{2} + A{B'}^{2}}= \sqrt{(b - a.\sin\alpha)^{2} + a^{2}.\cos^{2}\alpha}

    = \sqrt{b^{2} - 2ab.\sin\alpha +a^{2}\sin^{2}\alpha + a^{2}\cos^{2}\alpha}

    = \sqrt{a^{2} + b^{2} -
2ab\sin\alpha}.

    Bán kính đường tròn ngoại tiếp cần tính là

    \frac{AB}{\sin\widehat{ACB}} = 2R\Leftrightarrow R = \frac{\sqrt{a^{2} + b^{2} -2ab\sin\alpha}}{2\cos\alpha}

  • Câu 19: Thông hiểu

    Định giá trị tham số m thỏa mãn điều kiện

    Tìm m để A \subset D, biết A = ( - 3;7)D = (m;3 - 2m).

    Ta có: A \subset D \Leftrightarrow
\left\{ \begin{matrix}
m \leq - 3 \\
7 \leq 3 - 2m \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq - 3 \\
2m \leq - 4 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 3 \\
m \leq - 2 \\
\end{matrix} \right.\  \Leftrightarrow m \leq - 3.

  • Câu 20: Nhận biết

    Tính giá trị biểu thức

    Giá trị của \cos30^{0} +\sin60^{0} bằng bao nhiêu?

    Ta có: \cos30^{0} + \sin60^{0} =\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}.

  • Câu 21: Vận dụng

    Chọn phương án thích hợp

    Cho hình chữ nhật ABCDAB = aAD
= a\sqrt{2}. Gọi K là trung điểm của cạnh AD. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa :

    Ta có:

    AC = BD = \sqrt{AB^{2} + AD^{2}} =
\sqrt{2a^{2} + a^{2}} = a\sqrt{3}.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{AK} =
\overrightarrow{BA} + \frac{1}{2}\overrightarrow{AD} \\
\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}
\end{matrix} \right.

    \overset{}{\rightarrow}\overrightarrow{BK}.\overrightarrow{AC}
= \left( \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AD}
\right)\left( \overrightarrow{AB} + \overrightarrow{AD}
\right)

    =
\overrightarrow{BA}.\overrightarrow{AB} +
\overrightarrow{BA}.\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AD}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AD}.\overrightarrow{AD}

    = - a^{2} + 0 + 0 + \frac{1}{2}\left(
a\sqrt{2} \right)^{2} = 0.

    \overset{}{\rightarrow}\
\cos\widehat{ABC} = \sqrt{1 - sin^{2}\widehat{ABC}} =
\frac{5\sqrt{7}}{16}(vì \widehat{ABC} nhọn).

    Mặt khác góc giữa hai vectơ \overrightarrow{AB},\ \
\overrightarrow{BC} là góc ngoài của góc \widehat{ABC}

    Suy ra \cos\left(\overrightarrow{AB},\overrightarrow{BC} \right) = \cos\left( 180^{0} -\widehat{ABC} \right)= -  \cos\widehat{ABC} = - \frac{5\sqrt{7}}{16}.

  • Câu 22: Nhận biết

    Tìm đẳng thức sai

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 23: Vận dụng

    Khẳng định nào sau đây đúng?

    Trong hệ tọa độ Oxy, cho bốn điểm A(3; - 2),\ B(7;1),\ C(0;1),\ D( - 8; -
5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (4;3) \\
\overrightarrow{CD} = ( - 8; - 6) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{CD} = -
2\overrightarrow{AB}\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{CD} ngược hướng.

  • Câu 24: Thông hiểu

    Tính tích vô hướng của hai vectơ

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}

    Ta có: Tam giác ABC đều => \left\{ {\begin{array}{*{20}{c}}  {\left( {\overrightarrow {AB} ,\overrightarrow {AC} } ight) = {{60}^0}} \\   {\left| {\overrightarrow {AB} } ight| = \left| {\overrightarrow {AC} } ight| = a} \end{array}} ight.

    \begin{matrix}   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = a.a.\cos \left( {{{60}^0}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \frac{1}{2}{a^2} \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Viết số quy tròn của số đã cho

    Theo thống kê, dân số Việt Nam năm 200279\
715\ 675 người. Giả sử sai số tuyệt đối của số liệu thống kê này nhỏ hơn 10000 người. Hãy viết số quy tròn của số trên

    Vì sai số tuyệt đối của số liệu thống kê này nhỏ hơn 10000 người nên độ chính xác đến hàng nghìn nên ta quy tròn đến hàng chục nghìn.

    Vậy số quy tròn của số trên là 79720000 người.

  • Câu 26: Thông hiểu

    Tìm đẳng thức sai

    Cho lục giác đều ABCDEFO là tâm của nó. Đẳng thức nào dưới đây là đẳng thức sai?

    Hình vẽ minh họa:

    Ta có:

    \overrightarrow{AB} +
\overrightarrow{CD} - \overrightarrow{EF} = \overrightarrow{AB} +
\overrightarrow{BO} - \overrightarrow{OA}

    = \overrightarrow{AO} -
\overrightarrow{OA} = 2\overrightarrow{AO} \neq
\overrightarrow{0}.

  • Câu 27: Vận dụng

    Tìm tham số a thỏa mãn yêu cầu

    Cho hai tập A = \lbrack
0;5\rbrack; B = (2a;3a +
1\rbrack, a > - 1. Với giá trị nào của a thì A \cap B = \varnothing?

    Ta tìm A \cap B = \varnothing
\Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
2a \geq 5 \\
3a + 1 < 0 \\
\end{matrix} \right.\  \\
a > - 1 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{gathered}
  \left[ \begin{gathered}
  a \geqslant \frac{5}{2} \hfill \\
  a <  - \frac{1}{3} \hfill \\ 
\end{gathered}  \right. \hfill \\
  a >  - 1 \hfill \\ 
\end{gathered}  \right. \Rightarrow \left[ \begin{gathered}
  a \geqslant \frac{5}{2} \hfill \\
   - 1 < a <  - \frac{1}{3} \hfill \\ 
\end{gathered}  \right.

    \Rightarrow A \cap B \neq \varnothing
\Leftrightarrow - \frac{1}{3} \leq a < \frac{5}{2}

  • Câu 28: Thông hiểu

    Tìm tọa độ điểm B

    Cho K(1; - 3). Điểm A \in Ox,B \in Oy sao cho A là trung điểm KB. Tọa độ điểm B là:

    Ta có: A \in Ox,B \in Oy \Rightarrow
A(x;0),\ B(0;y)

    A là trung điểm KB \Rightarrow \left\{ \begin{matrix}
x = \frac{1 + 0}{2} \\
0 = \frac{- 3 + y}{2}
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{1}{2} \\
y = 3
\end{matrix} \right..Vậy B(0;3).

  • Câu 29: Nhận biết

    Tính độ dài vectơ

    Cho hình chữ nhật ABCDAB = 3,BC = 4. Độ dài của vectơ \overrightarrow{AC} là:

    Ta có: \left| \overrightarrow{AC} \right|
= AC = \sqrt{AB^{2} + BC^{2}} = \sqrt{3^{2} + 4^{2}} = 5.

  • Câu 30: Thông hiểu

    Xác định mệnh đề đúng

    Cho M,\ N là hai tập hợp khác rỗng. Mệnh đề nào sau đây đúng?

    Biểu đồ Ven:

    Ta có x \in (M\backslash N)
\Leftrightarrow \left\{ \begin{matrix}
x \in M \\
x \notin N \\
\end{matrix} \right.\ .

  • Câu 31: Vận dụng cao

    Tìm tham số m thỏa mãn điều kiện

    Cho hai tập hợp A = \lbrack - 3; -
1\rbrack \cup \lbrack 2;4\rbrack, B
= (m - 1;m + 2). Tìm m để A \cap B \neq \varnothing.

    Biểu diễn tập hợp trên trục số

    Ta đi tìm m để A \cap B =
\varnothing

    \Rightarrow \left\lbrack \begin{matrix}
m + 2 \leq - 3 \\
m - 1 \geq 4 \\
\left\{ \begin{matrix}
- 1 \leq m - 1 \\
m + 2 \leq 2 \\
\end{matrix} \right.\  \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
m \leq - 5 \\
m \geq 5 \\
m = 0 \\
\end{matrix} \right.

    \Rightarrow A \cap B \neq \varnothing
\Leftrightarrow \left\{ \begin{matrix}
- 5 < m < 5 \\
m \neq 0 \\
\end{matrix} \right.

    hay \left\{ \begin{matrix}
|m| < 5 \\
m \neq 0 \\
\end{matrix} \right.

  • Câu 32: Nhận biết

    Chọn phương án đúng

    Cho A = \lbrack a;a + 1). Lựa chọn phương án đúng.

    Ta có C_{\mathbb{R}}A\mathbb{=
R}\backslash A = ( - \infty;a) \cup \lbrack a + 1; +
\infty).

  • Câu 33: Nhận biết

    Chọn kết quả đúng

    Kết quả bài toán tính \overrightarrow{AB}
+ \overrightarrow{CD} + \overrightarrow{DA} +
\overrightarrow{BC} là:

    Ta có:

     \overrightarrow{AB} + \overrightarrow{CD}
+ \overrightarrow{DA} + \overrightarrow{BC} = \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} =
\overrightarrow{0} .

  • Câu 34: Thông hiểu

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 35: Thông hiểu

    Tính điểm kiểm tra trung bình

    Cho bảng thống kê điểm kiểm tra môn Hóa học của học sinh lớp 10C như sau:

    Điểm

    4

    5

    6

    7

    8

    Số học sinh

    2

    8

    7

    10

    8

    Tính điểm kiểm tra trung bình của học sinh lớp 10C?

    Số học sinh lớp 10C bằng: 35 (học sinh)

    Điểm kiểm tra trung bình của học sinh lớp 10C là:

    \overline{x} = \frac{4.2 + 5.8 + 6.7 +
7.10 + 8.8}{35} = 6,4

    Vậy điểm kiểm tra trung bình của 35 học sinh lớp 10C bằng 6,4.

  • Câu 36: Thông hiểu

    Xác định mệnh đề phủ định theo yêu cầu

    Cho mệnh đề: "\exists x\mathbb{\in
R},x^{2} + x + 1 = 0". Mệnh đề phủ định của mệnh đề trên là:

    Phủ định của "\exists""\forall" và phủ định của " = "" \neq " .

    Vậy đáp án cần tìm là "\forall
x\mathbb{\in R},x^{2} + x + 1 \neq 0"

  • Câu 37: Thông hiểu

    Tính chiều cao cột cờ

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 38: Thông hiểu

    Cặp số nào là nghiệm của bất phương trình

    Cặp số nào sau đây là nghiệm của bất phương trình 3x - 5y > 12?

    Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:

    3.0 - 5.3 =  - 15 < 12

    Vậy (0;3) không là cặp nghiệm của bất phương trình

    Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:

    3.6- 5.1=13> 12

    Vậy (6; 1) là cặp nghiệm của bất phương trình.

    Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:

    3.2 - 5.4 =  - 14 < 12

    Vậy (2; 4) không là cặp nghiệm của bất phương trình.

    Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:

    3.3 - 5.2 =  - 1 < 12

    Vậy (3; 2) không là cặp nghiệm của bất phương trình.

  • Câu 39: Vận dụng

    Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?

    Tam giác ABC vuông tại A, đường cao AH = 32\ \ cm. Hai cạnh ABAC tỉ lệ với 34. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?

    Do tam giác ABC vuông tại A, có tỉ lệ 2 cạnh góc vuông AB:AC3:4 nên AB là cạnh nhỏ nhất trong tam giác.

    Ta có \frac{AB}{AC} = \frac{3}{4}
\Rightarrow AC = \frac{4}{3}AB.

    Trong \Delta ABCAH là đường cao

    \Rightarrow \frac{1}{AH^{2}} =
\frac{1}{AB^{2}} + \frac{1}{AC^{2}} = \frac{1}{AB^{2}} + \frac{1}{\left(
\frac{4}{3}AB^{2} ight)}

    \Leftrightarrow \frac{1}{32^{2}} =
\frac{1}{AB^{2}} + \frac{9}{16AB^{2}} \Rightarrow AB = 40.

  • Câu 40: Nhận biết

    Chọn đẳng thức đúng

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 41: Nhận biết

    Tính số trung bình cộng của mẫu số liệu

    Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:

    2  4  2  1  3  5  1  1  2  3  1  2  2  3  4  1  1  2  3  4.

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{1.6 + 2.6 + 3.4 + 4.3 + 5}}{{20}} = 2,35

  • Câu 42: Vận dụng cao

    Tìm giá trị lớn nhất

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 43: Vận dụng cao

    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình vuông ABCD cạnh a. Gọi M là trung điểm của AB, lấy các điểm P,Q,R lần lượt là các điểm thay đổi trên các cạnh BC,AC,AD sao cho \widehat{PMR} = 90^{0}. Tìm giá trị nhỏ nhất của biểu thức \left|\overrightarrow{MP} + \overrightarrow{MQ} + \overrightarrow{MR}ight|.

    Hình vẽ minh họa

    Tìm giá trị nhỏ nhất của biểu thức

    Đặt \left| {\overrightarrow {AR} } ight| = x;\left| {\overrightarrow {BP} } ight| = y;\left| {\overrightarrow {ME} } ight| = z;\left| {\overrightarrow {EQ} } ight| = t

    Khi đó \Delta AMR\sim\Delta BPM

    \Rightarrow \left\{ \begin{matrix}xy = \dfrac{a^{2}}{4} \\x + y \geq 2\sqrt{xy} = a \\\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi x =y hay P, Q là trung điểm của BC, DA

    Ta có:

    \left| \overrightarrow{MP} +\overrightarrow{MQ} + \overrightarrow{MR} ight|^{2} = (x + y + z)^{2}+ t^{2} \geq (1 + z)^{2} + t^{2} = \left| \overrightarrow{MH}ight|

    Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.

    Ta lại có: \widehat{MDH} \approx 108^{0}\Rightarrow MH \geq MD = \frac{a\sqrt{5}}{2}

  • Câu 44: Nhận biết

    Phát biểu mệnh đề

    Mệnh đề: “Nếu một tứ giác là hình bình hành thì nó là hình thang” có thể được phát biểu lại là

    Mệnh đề: “Nếu một tứ giác là hình bình hành thì nó là hình thang” có thể được phát biểu lại là “Một tứ giác là hình thang là điều kiện cần để nó là hình bình hành”.

  • Câu 45: Nhận biết

    Tính khoảng biến thiên

    Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.

    Khoảng biến thiên điểm số là:

    Khoảng biến thiên là R = 93 - 50 =
43.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo