Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Hệ thức lượng trong tam giác

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 3 Hệ thức lượng trong tam giác sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính giá trị biểu thức B

    Giá trị của B = \cos^{2}73^{0} +\cos^{2}87^{0} + \cos^{2}3^{0} + \cos^{2}17^{0} là:

    Ta có:

    B = \left( \cos^{2}73^{{^\circ}} +\cos^{2}17^{{^\circ}} \right) + \left(\cos^{2}87^{{^\circ}} +\cos^{2}3^{{^\circ}} \right)

    = \left( \cos^{2}73^{{^\circ}} +\sin^{2}73^{{^\circ}} \right) + \left( \cos^{2}87^{{^\circ}} +\sin^{2}87^{{^\circ}} \right) = 2.

  • Câu 2: Nhận biết

    Tìm đẳng thức sai

    Đẳng thức nào sau đây sai?

    Giá trị lượng giác của góc đặc biệt ta có:

    \left\{ \begin{matrix}\sin120^{0} = \dfrac{\sqrt{3}}{2} \\\cos30^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \sin120^{0} + \cos30^{0} =2.\dfrac{\sqrt{3}}{2} = \sqrt{3} \neq 0

    Vậy đẳng thức sai là: sin120^{0} +
cos30^{0} = 0.

  • Câu 3: Vận dụng

    Tìm hệ thức đúng

    Tam giác MPQ vuông tại P. Trên cạnh MQ lấy hai điểm E,\ \ F sao cho các góc \widehat{MPE},\ \ \widehat{EPF},\ \
\widehat{FPQ} bằng nhau. Đặt MP =
q,\ \ PQ = m,\ \ PE = x,\ \ PF = y. Trong các hệ thức sau, hệ thức nào đúng?

    Ta có \widehat{MPE} = \widehat{EPF} =
\widehat{FPQ} = \frac{\widehat{MPQ}}{3} = 30{^\circ} \Rightarrow \widehat{MPF} = \widehat{EPQ} =
60{^\circ}.

    Theo định lí hàm cosin, ta có

    ME^{2} = AM^{2} + AE^{2} -
2.AM.AE.cos\widehat{MAE}

    = q^{2} + x^{2} -
2qx.cos30{^\circ} = q^{2} + x^{2} -
qx\sqrt{3}

    MF^{2} = AM^{2} + AF^{2} -
2AM.AF.cos\widehat{MAF}

    = q^{2} + y^{2} -
2qy.cos60{^\circ} = q^{2} + y^{2} -
qy

    MQ^{2} = MP^{2} + PQ^{2} = q^{2} +
m^{2}.

  • Câu 4: Nhận biết

    Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 5: Nhận biết

    Tính giá trị biểu thức

    Giá trị của \cos30^{0} +\sin60^{0} bằng bao nhiêu?

    Ta có: \cos30^{0} + \sin60^{0} =\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}.

  • Câu 6: Vận dụng

    Tính giá trị của biểu thức

    Cho \cot\alpha =
- 3\sqrt{2} với \ \frac{\pi}{2}
< \alpha < \pi. Khi đó giá trị \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} bằng:

    \frac{1}{sin^{2}\alpha} = 1 +
cot^{2}\alpha = 1 + 18 = 19

    ightarrow sin^{2}\alpha = \frac{1}{19}
ightarrow \sin\alpha = \pm \frac{1}{\sqrt{19}}

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \sin\alpha > 0 \Rightarrow \sin\alpha =
\frac{1}{\sqrt{19}}

    Suy ra \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} = \frac{sin^{2}\frac{\alpha}{2} +
cos^{2}\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{2}{\sin\alpha} =
2\sqrt{19}.

  • Câu 7: Thông hiểu

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn 3cos\alpha + 2sin\alpha = 2\sin\alpha < 0. Tính \sin\alpha.

    Ta có 3cos\alpha + 2sin\alpha =
2 \Leftrightarrow (3cos\alpha +
2sin\alpha)^{2} = 4

    \begin{matrix}
\Leftrightarrow 9cos^{2}\alpha + 12cos\alpha.sin\alpha + 4sin^{2}\alpha
= 4 \\
\\
\end{matrix}

    \Leftrightarrow 5cos^{2}\alpha +
12cos\alpha.sin\alpha = 0

    \Leftrightarrow \cos\alpha(5cos\alpha +
12sin\alpha) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\alpha = 0 \\
5cos\alpha + 12sin\alpha = 0 \\
\end{matrix} ight.\ .

    \bullet \cos\alpha = 0 \Rightarrow \sin\alpha =
1: loại (vì \sin\alpha <
0).

    \bullet 5cos\alpha + 12sin\alpha = 0, ta có hệ phương trình \left\{ \begin{matrix}
5cos\alpha + 12sin\alpha = 0 \\
3cos\alpha + 2sin\alpha = 2 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\sin\alpha = - \frac{5}{13} \\
\cos\alpha = \frac{12}{13} \\
\end{matrix} ight.\ .

  • Câu 9: Thông hiểu

    Tính giá trị của biểu thức

    Giá trị của A = \tan5^{{^\circ}}.\tan10^{{^\circ}}.\tan15^{{^\circ}}...\tan80^{{^\circ}}.\tan85^{{^\circ}} là

    Ta có:

    A = \tan5^{0}.\tan10^{0}.\tan15^{0}...\tan80^{0}.\tan85^{0}

    A = \left( \tan 5^{0}.\tan85^{0}\right).\left( \tan10^{0}.\tan80^{0} \right)...\left( \tan40^{0}\tan50^{0}\right).\tan45^{0}

    A = \left( \tan 5^{0}.\cot5^{0}\right).\left( \tan10^{0}.\cot10^{0} \right)...\left( \tan40^{0}\cot40^{0}\right).\tan45^{0} = 1.

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 6;8;10 có bán kính đường tròn ngoại tiếp bằng bao nhiêu?

    Ta có: 6^{2} + 8^{2} = 10^{2} \Rightarrow
R = \frac{10}{2} = 5. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 11: Thông hiểu

    Tìm câu sai

    Cho tam giác ABC. Đẳng thức nào sai ?

    Ta có:

    A + B + C = 180^{0}

    \Rightarrow \frac{A + B + 2C}{2} =
90^{0} + \frac{C}{2}

    \Rightarrow \cos\left( \frac{B + C}{2}
\right) = \cos\left( 90^{0} + \frac{C}{2} \right)

    \Leftrightarrow \cos\left( \frac{B +
C}{2} \right) = - \sin\frac{C}{2}.

  • Câu 12: Thông hiểu

    Tính giá trị cosa

    Cho \sin\alpha =\frac{1}{4}, với 0^{\circ} <
\alpha < 90^{\circ}. Giá trị \cos\alpha bằng

    Ta có:

    \cos^{2}\alpha = 1 -\sin^{2}\alpha

    = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}

    \Rightarrow \cos\alpha =\frac{\sqrt{15}}{4} (do 0^{\circ}
< \alpha < 90^{\circ}).

    Vậy \cos\alpha =\frac{\sqrt{15}}{4}.

  • Câu 13: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 14: Thông hiểu

    Tính khoảng cách AB

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm C mà từ đó có thể nhìn được AB dưới một góc 78^{o}24'. Biết CA = 250m,CB = 120m. Khoảng cách AB bằng bao nhiêu?

    Ta có:

    AB^{2} = CA^{2} + CB^{2} -2CB.CA.\cos C

    = 250^{2} + 120^{2} -2.250.120.\cos78^{o}24' \simeq 64835

    \Rightarrow AB \simeq 255.

  • Câu 15: Vận dụng

    Tính số đo góc A

    Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, AC=R\sqrt{2}. Tính số đo của \widehat{A} biết \widehat{A} là góc tù.

    Theo bài ra ta có: \widehat{A} là góc tù => \widehat B,\widehat C là góc nhọn.

    Xét tam giác ABC áp dụng định lí sin ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \dfrac{{R\sqrt 2 }}{{\sin \widehat B}} = \dfrac{R}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \widehat B = \dfrac{{R\sqrt 2 }}{{2R}} = \dfrac{{\sqrt 2 }}{2}} \\   {\sin \widehat C = \dfrac{R}{{2R}} = \dfrac{1}{2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\widehat B = {{45}^0}} \\   {\widehat C = {{30}^0}} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \widehat A + \widehat B + \widehat C = {180^0}

    \Rightarrow \widehat A = 180^0-45^0-35^0=105^0

  • Câu 16: Nhận biết

    Tính độ dài cạnh a

    Cho \Delta
ABCb = 6,c = 8,\widehat{A} =
60^{0}. Độ dài cạnh a là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos
A = 36 + 64 - 2.6.8.cos60^{0} =
52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 17: Nhận biết

    Tính độ dài cạnh b

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 18: Nhận biết

    Tính số đo góc B

    Cho tam giác ABC, biết a = 13,b = 14,c = 15. Tính góc B

    Ta có:

    \cos B = \frac{a^{2} + c^{2} -
b^{2}}{2ac} = \frac{13^{2} + 15^{2} - 14^{2}}{2.13.15} =
\frac{33}{65}

    \Rightarrow B \simeq 59^{0}29'

  • Câu 19: Nhận biết

    Tính số đo góc B

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 20: Nhận biết

    Tính độ dài cạnh tam giác

    Cho \Delta ABCb = 6,c = 8,\widehat{A} = 60^{0}. Độ dài cạnh a là:

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A

    = 36 + 64 - 2.6.8.\cos60^{0} =52

    \Rightarrow a = 2\sqrt{13}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo