Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Hệ thức lượng trong tam giác KNTT

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 3 Hệ thức lượng trong tam giác sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 2: Vận dụng

    Tính số đo góc A

    Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, AC=R\sqrt{2}. Tính số đo của \widehat{A} biết \widehat{A} là góc tù.

    Theo bài ra ta có: \widehat{A} là góc tù => \widehat B,\widehat C là góc nhọn.

    Xét tam giác ABC áp dụng định lí sin ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \dfrac{{R\sqrt 2 }}{{\sin \widehat B}} = \dfrac{R}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \widehat B = \dfrac{{R\sqrt 2 }}{{2R}} = \dfrac{{\sqrt 2 }}{2}} \\   {\sin \widehat C = \dfrac{R}{{2R}} = \dfrac{1}{2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\widehat B = {{45}^0}} \\   {\widehat C = {{30}^0}} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \widehat A + \widehat B + \widehat C = {180^0}

    \Rightarrow \widehat A = 180^0-45^0-35^0=105^0

  • Câu 3: Nhận biết

    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 4: Thông hiểu

    Chọn khẳng định đúng

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 5: Vận dụng cao

    Tam giác ABC là tam giác gì

    Tam giác ABC là tam giác gì khi có các góc thỏa mãn biểu thức

    \sin2\widehat{A}.\cos2\widehat{A} +\sin2\widehat{B}.\cos2\widehat{B} + \sin2\widehat{C}.\cos2\widehat{C} =0?

    Ta có:

    \sin2\widehat{A}.\cos2\widehat{A} +\sin2\widehat{B}.\cos2\widehat{B} + \sin2\widehat{C}.\cos2\widehat{C} =0

    \Leftrightarrow2\sin2\widehat{A}.\cos2\widehat{A} + 2\sin2\widehat{B}.\cos2\widehat{B} +\sin2\widehat{C}.\cos2\widehat{C} = 0

    \Leftrightarrow \sin4\widehat{A} +\sin4\widehat{B} + 2\sin2\widehat{C}.\cos2\widehat{C} = 0

    \Leftrightarrow 2\sin2\left( \widehat{A}+ \widehat{B} ight).\cos2\left( \widehat{A} - \widehat{B} ight) +2\sin2\widehat{C}.\cos2\left( \widehat{A} + \widehat{B} ight) =0

    \Leftrightarrow -2\sin2\widehat{C}.\left\lbrack \cos2\left( \widehat{A} - \widehat{B}ight) - \cos2\left( \widehat{A} + \widehat{B} ight) ightbrack =0

    \Leftrightarrow -4\sin2\widehat{C}.\sin2A.\sin2B = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sin2\widehat{C} = 0 \\\sin2\widehat{A} = 0 \\\sin2\widehat{B} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = \pi \\2\widehat{A} = \pi \\2\widehat{A} = \pi \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \dfrac{\pi}{2} \\\widehat{A} = \dfrac{\pi}{2} \\\widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC là tam giác vuông.

  • Câu 6: Thông hiểu

    Chọn đáp án đúng

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.

    Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B, có:

    \tan\widehat{AOB} =
\frac{AB}{OB}\Rightarrow AB = \tan60^{0}.OB =60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là: h = AB + OC = \left( 60\sqrt{3} + 1
\right)\ m.

  • Câu 7: Vận dụng cao

    Tìm điều kiện góc C để diện tích tam giác đạt max

    Tam giác ABCBC = aCA=b. Tam giác ABC có diện tích lớn nhất khi góc C bằng:

    Diện tích tam giác ABC

    S_{\Delta ABC} =\frac{1}{2}.AC.BC.\sin\widehat{ACB} =\frac{1}{2}.ab.\sin\widehat{ACB}.

    a,\ \ b không đổi và \sin\widehat{ACB} \leq 1, \forall C nên suy ra S_{\Delta ABC} \leq
\frac{ab}{2}.

    Dấu "=" xảy ra khi và chỉ khi \sin\widehat{ACB} = 1
\Leftrightarrow \widehat{ACB} = 90^{0}.

    Vậy giá trị lớn nhất của diện tích tam giác ABCS =
\frac{ab}{2}.

  • Câu 8: Nhận biết

    Tính độ dài cạnh c

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức

    Biểu thức: f(x) = \cos^{4}x +\cos^{2}x.\sin^{2}x + \sin^{2}x có giá trị bằng:

    Ta có:

    f(x) = \cos^{2}x\left( \cos^{2}x + \sin^{2}x\right) + \sin^{2}x = \cos^{2}x + \sin^{2}x = 1.

  • Câu 10: Nhận biết

    Tính độ dài bán kính đường tròn nội tiếp

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 11: Nhận biết

    Tính diện tích tam giác ABC

    Cho tam giác ABCAB =
12,AC = 13,BC = 5. Diện tích S của tam giác ABC là:

    Ta có: BA^{2} + BC^{2} = AC^{2} nên tam giác ABC vuông tại B.

    Diện tích tam giác là: S = \frac{1}{2}BA
\cdot BC = 30.

  • Câu 12: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 13: Thông hiểu

    Tính đường cao tam giác ABC

    Cho tam giác ABC có b = 7; c = 5, \cos A
= \frac{3}{5}. Đường cao h_{a} của tam giác ABC là

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5} = 32
\Rightarrow a = 4\sqrt{2}.

    Mặt khác: \sin^{2}A + \cos^{2}A =1

    \Rightarrow \sin^{2}A = 1 - \cos^{2}A = 1- \frac{9}{25} = \frac{16}{25}

    \Rightarrow \sin A = \frac{4}{5} (Vì \sin A > 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.\sin A= \frac{1}{2}a.h_{a}

    \Rightarrow h_{a} = \dfrac{bc\sin A}{a} =\dfrac{7.5.\dfrac{4}{5}}{4\sqrt{2}} = \dfrac{7\sqrt{2}}{2}.

  • Câu 14: Thông hiểu

    Chọn khẳng định đúng

    Cho tam giác ABC. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: m_{c}^{2} =
\frac{2b^{2} + 2a^{2} - c^{2}}{4}

  • Câu 15: Nhận biết

    Tính độ dài bán kính đường tròn nội tiếp tam giác

    Cho \Delta ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp rcủa tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p}
= \frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 16: Vận dụng

    Chiều cao của tháp gần với giá trị nào

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} =
15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx
68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 17: Nhận biết

    Xác định bất đẳng thức đúng

    Bất đẳng thức nào dưới đây là đúng?

    Câu đúng là: \cos95^{0} > \cos100^{0}.

  • Câu 18: Thông hiểu

    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi. \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{5}{13}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = - \frac{5}{12}.

  • Câu 19: Vận dụng

    Tính độ dài PT

    Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, OQ=\sqrt{2}+\sqrt{6}m

    Tính độ dài PT

    Khi đó đoạn PT bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\widehat {SQB} = \widehat {PQT} = \alpha } \\   {\widehat {TOP} = \beta } \end{array}} ight.

    Áp dụng định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  P{Q^2} = O{P^2} + O{Q^2} - 2OP.OQ.\cos \widehat {POQ} \hfill \\   \Rightarrow P{Q^2} = {\left( {\sqrt 2 } ight)^2} + {\left( {\sqrt 2  + \sqrt 6 } ight)^2} - 2.\sqrt 2 .\left( {\sqrt 2  + \sqrt 6 } ight).\cos {45^0} \hfill \\   \Rightarrow PQ = 2\sqrt 2 \left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  \cos \alpha  = \cos \widehat {OQP} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{O{Q^2} + P{Q^2} - O{P^2}}}{{2.OQ.PQ}} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{{{\left( {\sqrt 2  + \sqrt 6 } ight)}^2} + {{\left( {2\sqrt 2 } ight)}^2} - {{\left( {\sqrt 2 } ight)}^2}}}{{2.\left( {\sqrt 2  + \sqrt 6 } ight).\sqrt 2 }} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{2} \Rightarrow \alpha  = {30^0} \hfill \\ \end{matrix}

    Ta lại có: \beta  = {45^0} + \alpha  = {45^0} + {30^0} = {75^0}

    => {\widehat {TPO}}=75^0

    Xét tam giác OTP ta có: 

    \begin{matrix}  \widehat {OTP} + \widehat {TOP} + \widehat {TPO} = {180^0} \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {\widehat {TOP} + \widehat {TPO}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {{{45}^0} + {{75}^0}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {60^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác OTP ta có:

    \begin{matrix}  \dfrac{{OP}}{{\sin \widehat {OTP}}} = \dfrac{{PT}}{{\sin \widehat {TOP}}} \hfill \\   \Rightarrow PT = \dfrac{{OP.\sin \widehat {TOP}}}{{\sin \widehat {OTP}}} \hfill \\   \Rightarrow PT = \dfrac{{2.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{2\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Chọn đáp án đúng

    Biểu thức \left( \cot a + \tan a
\right)^{2} bằng:

    Ta có:

    \left( \cot a + \tan a \right)^{2} =\cot^{2}a + 2\cot a.\tan a + \tan^{2}a

    = \left( \cot^{2}a + 1 \right) + \left(\tan^{2}a + 1 \right) = \dfrac{1}{\sin^{2}a} +\dfrac{1}{\cos^{2}a}.

  • Câu 21: Nhận biết

    Chọn hệ thức đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có: sin^{2}2\alpha + cos^{2}2\alpha = 1 là công thức đúng.

  • Câu 22: Thông hiểu

    Chọn công thức đúng

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 23: Nhận biết

    Chọn phương án đúng

    Giá trị của \tan30^{0} +\cot30^{0} bằng bao nhiêu?

    Ta có: \tan30^{0} + \cot30^{0} =\frac{\sqrt{3}}{3} + \sqrt{3} = \frac{4\sqrt{3}}{3}.

  • Câu 24: Thông hiểu

    Chọn câu đúng

    Chọn mệnh đề đúng?

    Ta có:

    \sin^{4}x - \cos^{4}x = \left( \sin^{2}x -\cos^{2}x \right)\left( \sin^{2}x + \cos^{2}x \right)

    = \left( 1 - \cos^{2}x \right) - \cos^{2}x= 1 - 2\cos^{2}x.

  • Câu 25: Nhận biết

    Xác định câu sai

    Tìm khẳng định sai trong các khẳng định sau:

    Đáp án sai là: cos75^{0} >
cos50^{0}.

  • Câu 26: Nhận biết

    Tính diện tích tam giác

    Cho \Delta ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông:

    S = \sqrt{p(p - a)(p - b)(p -
c)}= \sqrt{12(12 - 6)(12 - 8)(12 - 10)} =
24.

  • Câu 27: Nhận biết

    Tìm khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Giá trị lượng giác của góc đặc biệt ta có: 

    \left\{ \begin{matrix}cos60^{0} = \frac{1}{2} \\ \sin120^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \cos60^{0} \neq \sin120^{0}

  • Câu 28: Nhận biết

    Tính sin góc A

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Tính diện tích tam giác

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 30: Thông hiểu

    Tính số đo góc C

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 31: Nhận biết

    Tính giá trị cotang của góc

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Cho \tan\alpha + \cot\alpha = m. Tìm m để \tan^{2}\alpha + \cot^{2}\alpha = 7.

    Ta có:

    7 = \tan^{2}\alpha + \cot^{2}\alpha =\left( \tan\alpha + \cot\alpha \right)^{2} - 2

    \Rightarrow m^{2} = 9 \Leftrightarrow m =
\pm 3.

  • Câu 33: Nhận biết

    Tính độ dài cạnh b

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 34: Vận dụng

    Tính giá trị của biểu thức

    Biết \sin a + \cos a = \sqrt{2}. Hỏi giá trị của \sin^{4}a + \cos^{4}a bằng bao nhiêu?

    Ta có:

    \sin a + \cos a = \sqrt{2} \Rightarrow 2
= \left( \sin a + \cos a \right)^{2}

    \Rightarrow \sin a.\cos a =\frac{1}{2}.

    Khi đó:

    \sin^{4}a + \cos^{4}a = \left( \sin^{2}a +\cos^{2}a \right) - 2\sin^{2}a\cos^{2}a

    = 1 - 2\left( \frac{1}{2} \right)^{2} =
\frac{1}{2}.

  • Câu 35: Thông hiểu

    Tính bán kính đường tròn ngoại tiếp tam giác

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 36: Nhận biết

    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 37: Vận dụng

    Tính giá trị biểu thức

    Cho biết \cos\alpha = -
\frac{2}{3}. Giá trị của biểu thức E = \frac{\cot\alpha - 3\tan\alpha}{2\cot\alpha -\tan\alpha} bằng bao nhiêu?

    Ta có:

    E = \frac{\cot\alpha -3\tan\alpha}{2\cot\alpha - \tan\alpha} = \frac{1 - 3\tan^{2}\alpha}{2 -\tan^{2}\alpha}

    = \dfrac{4 - 3\left( \tan^{2}\alpha + 1\right)}{3 - \left( 1 + \tan^{2}\alpha \right)} = \frac{4 -\dfrac{3}{\cos^{2}\alpha}}{3 - \dfrac{1}{\cos^{2}\alpha}}

    = \frac{4\cos^{2}\alpha -3}{3\cos^{2}\alpha - 1} = - \frac{11}{3}.

  • Câu 38: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 39: Thông hiểu

    Tính số đo góc A

    Cho tam giác A BC, biết a = 24,b = 13,c = 15. Tính góc A?

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{13^{2} + 15^{2} - 24^{2}}{2.13.15} = -
\frac{7}{15}

    \Rightarrow A \simeq 117^{0}49'\
.

  • Câu 40: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hệ thức lượng trong tam giác KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo