Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Hệ thức lượng trong tam giác KNTT

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 3 Hệ thức lượng trong tam giác sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính độ cao CH của ngọn núi

    Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

    Tính độ cao CH của ngọn núi

    Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?

    Ta có: \widehat {ABC} = {90^0} + {15^0}30' = {105^0}30'

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat {ABC} + \widehat {CAB} + \widehat {ACB} = {180^0} \hfill \\   \Rightarrow \widehat {ACB} = {180^0} - \left( {\widehat {ABC} + \widehat {CAB}} ight) \hfill \\   \Rightarrow \widehat {ACB} = {180^0} - \left( {{{105}^0}30\prime  + {{60}^0}} ight) \hfill \\   \Rightarrow \widehat {ACB} = {14^0}30\prime  \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AB}}{{\sin \widehat {ACB}}} = \dfrac{{AC}}{{\sin \widehat {ABC}}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {ACB}}} \hfill \\   \Rightarrow AC = \dfrac{{70.\sin {{107}^0}30'}}{{\sin {{14}^0}30'}} \approx 269,4\left( m ight) \hfill \\ \end{matrix}

    Xét tam giác ACH vuông tại H ta có:

    \begin{matrix}  CH = AC.\sin \widehat {CAH} \hfill \\   \Rightarrow CH \approx 269,4.\sin {30^0} \approx 134,7\left( m ight) \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi. \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{5}{13}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = - \frac{5}{12}.

  • Câu 3: Thông hiểu

    Tính giá trị lượng giác

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 4: Thông hiểu

    Tính khoảng cách AB

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm C mà từ đó có thể nhìn được AB dưới một góc 56^{0}16'. Biết CA = 200m;CB = 180m. Khoảng cách AB bằng bao nhiêu?

    Ta có:

    AB^{2} = CA^{2} + CB^{2} -2CB.CA.\cos\widehat{C}

    = 200^{2} + 180^{2} -2.200.180.\cos56^{0}16' \approx 32416

    \Rightarrow AB = 180m

  • Câu 5: Vận dụng

    Tính giá trị của biểu thức

    Giá trị của biểu thức A = \tan1^{0}.\tan2^{0}.\tan3^{0}...\tan88^{0}.\tan89^{0} là

    Ta có:

    A = \left( \tan 1^{0}.\tan89^{0}\right).\left( \tan 2^{0}.\tan88^{0} \right)...\left( tan44^{0}.\tan46^{0}\right).\tan45^{0}

    A = \left( \tan 1^{0}.\cot1^{0}\right).\left( \tan 2^{0}.\cot2^{0} \right)...\left( \tan44^{0}.\cot44^{0}\right).\tan45^{0} = 1.

  • Câu 6: Nhận biết

    Chọn đẳng thức chưa chính xác

    Đẳng thức nào sau đây là sai?

    Ta có: sin^{2}\alpha + cos^{2}\alpha =
1 nên đẳng thức chưa chính xác là: sin^{2}2x + cos^{2}2x = 1.

  • Câu 7: Nhận biết

    Chọn đẳng thức đúng

    Trong các đẳng thức sau đây, đẳng thức nào đúng?

    Giá trị lượng giác của góc đặc biệt.

  • Câu 8: Nhận biết

    Chọn đáp án thích hợp

    Cho \Delta ABC thỏa mãn: 2cosB = \sqrt{2}. Khi đó:

    Ta có: 2\cos B = \sqrt{2} \Leftrightarrow\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} =45^{0}.

  • Câu 9: Nhận biết

    Tìm đẳng thức sai

    Trong các đẳng thức sau đây, đẳng thức nào sai?

    Vi \sin60^{0} + \cos60^{0} =\frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2} \neq1 suy ra đẳng thức sai là: \sin60^{0} + \cos60^{0} = 1.

  • Câu 10: Nhận biết

    Tính độ dài cạnh b

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 11: Nhận biết

    Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 12: Nhận biết

    Chọn đẳng thức đúng

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 13: Thông hiểu

    Tính độ dài đường cao

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 14: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 15: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 16: Vận dụng

    Tính giá trị biểu thức

    Cho góc \alpha thỏa mãn \sin(\pi + \alpha) = - \frac{1}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \tan\left( \frac{7\pi}{2} - \alpha
ight).

    Ta có P = \tan\left( \frac{7\pi}{2} -
\alpha ight) = \tan\left( 3\pi + \frac{\pi}{2} - \alpha
ight) = \tan\left( \frac{\pi}{2}
- \alpha ight) = \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}.

    Theo giả thiết: \sin(\pi + \alpha) = -
\frac{1}{3} \Leftrightarrow -
\sin\alpha = - \frac{1}{3} \Leftrightarrow \sin\alpha =
\frac{1}{3}.

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{2\sqrt{2}}{3} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{2\sqrt{2}}{3}\overset{}{ightarrow}P = - 2\sqrt{2}.

  • Câu 17: Nhận biết

    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 18: Nhận biết

    Tính số đo góc A

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

  • Câu 19: Thông hiểu

    Tìm diện tích tam giác

    Một tam giác có ba cạnh là 13,14,15. Diện tích tam giác bằng bao nhiêu?

    Ta có:

    p = \frac{a + b + c}{2} = \frac{13
+ 14 + 15}{2} = 21.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)}

    = \sqrt{21(21 - 13)(21 - 14)(21 - 15)} =
84.

  • Câu 20: Vận dụng cao

    Tính giá trị biểu thức

    Cho tam giác ABC có diện tích S, lấy G là trọng tâm và \widehat{GAB} = \alpha;\widehat{GBC} =
\beta;\widehat{GCA} = \gamma. Giả sử AB = c;BC = a;AC = b , tính giá trị biểu thức \cot\alpha + \cot\beta +
\cot\gamma theo a;b;c;S?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC. Kẻ MH\bot
AB

    Tam giác AMH vuông => \cos\alpha = \frac{AH}{AM}

    Tam giác BMH vuông => \cos B = \frac{BH}{BM} =
\frac{2BH}{a}

    Ta có: AB = AH + HB

    \Rightarrow c = AM.cos\alpha +
\frac{a}{2}.cos\beta

    \Rightarrow \cos\alpha =\frac{1}{AM}\left( c - \frac{a}{2}.\cos\beta ight)(*)

    Mặt khác áp dụng định lí sin cho tam giác AMB ta được:

    \frac{MB}{\sin\alpha} = \frac{MA}{\sin
B} \Rightarrow \sin\alpha = \frac{MB.sinB}{MA} =
\frac{a.sinB}{2MA}(**)

    Từ (*) và (**) ta được:

    \cot\alpha = \dfrac{c - \dfrac{a}{2}\cos B}{\dfrac{a}{2}\sin B} = \dfrac{2c - a\cos B}{b}

    = \dfrac{R\left( 4c - 2a\cos Bight)}{ab} = \dfrac{4c^{2} - 2ac\cos B}{\dfrac{abc}{R}}

    \Rightarrow \cot\alpha = \frac{3c^{2} +
b^{2} - a^{2}}{4S}

    Chứng minh tương tự ta có: \left\{\begin{matrix}\cot\beta = \dfrac{3a^{2} + c^{2} - b^{2}}{4S} \\\cot\gamma = \dfrac{3b^{2} + b^{2} - c^{2}}{4S} \\\end{matrix} ight.

    Do đó:

    \cot\alpha + \cot\beta +
\cot\gamma

    = \frac{3c^{2} + b^{2} - a^{2}}{4S} +
\frac{3a^{2} + c^{2} - b^{2}}{4S} + \frac{3b^{2} + b^{2} -
c^{2}}{4S}

    = \frac{3\left( a^{2} + b^{2} + c^{2}
ight)}{4S}

  • Câu 21: Nhận biết

    Tính số đo góc B

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 22: Nhận biết

    Tính độ dài cạnh còn lại của tam giác

    Tam giác ABCa = 8,c = 3,\widehat{B} = 60^{0}. Độ dài cạnh b bằng bao nhiêu?

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    = 8^{2} + 3^{2} - 2.8.3.\cos60^{0} = 49\Rightarrow b = 7.

  • Câu 23: Vận dụng cao

    Chọn khẳng định đúng

    Cho tam giác ABC thỏa mãn biểu thức

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    Chọn khẳng định đúng.

    Ta có:

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\cot^{2}\widehat{B} + \cot^{2}\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} -2

    \Leftrightarrow \left(\sin^{2}\widehat{B} + \sin^{2}\widehat{C} ight)\left(\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} ight) =4

    \Leftrightarrow\dfrac{\sin^{2}\widehat{B}}{\sin^{2}\widehat{C}} +\dfrac{\sin^{2}\widehat{C}}{\sin^{2}\widehat{B}} - 2 = 0

    \Leftrightarrow \left(\dfrac{\sin\widehat{B}}{\sin\widehat{C}} -\dfrac{\sin\widehat{C}}{\sin\widehat{B}} ight)^{2} = 0

    \Leftrightarrow \sin\widehat{B} =
\sin\widehat{C}

    \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân.

  • Câu 24: Nhận biết

    Chọn công thức đúng

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} = \frac{2b^{2} + 2c^{2} -
a^{2}}{4}.

  • Câu 25: Thông hiểu

    Chọn đáp án đúng

    Biểu thức \tan^{2}x\sin^{2}x - \tan^{2}x +\sin^{2}x có giá trị bằng

    Ta có

    \tan^{2}x\sin^{2}x - \tan^{2}x +\sin^{2}x

    = \tan^{2}x\left( \sin^{2}x - 1 \right) +\sin^{2}x

    = \frac{\sin^{2}x}{\cos^{2}x}\left( -\cos^{2}x \right) + \sin^{2}x = 0.

  • Câu 26: Nhận biết

    Tìm câu sai

    Cho tam giác ABC. Tìm công thức sai trong các công thức dưới đây?

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 27: Thông hiểu

    Chọn khẳng định đúng

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 28: Thông hiểu

    Tính độ dài cạnh của tam giác

    Tam giác ABCa = 16,8; \widehat{B} = 56^{0}13'; \widehat{C} = 71^{0}. Cạnh c bằng bao nhiêu?

    Trong tam giác ABC: \widehat{A} + \widehat{B} + \widehat{C} =
180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
71^{0} - 56^{0}13' = 52^{0}47'.

    Mặt khác \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C}

    \Rightarrow \frac{a}{\sin A} =
\frac{c}{\sin C}

    \Rightarrow c = \frac{a.\sin C}{\sin A} =\frac{16,8.sin71^{0}}{\sin52^{0}47'} \simeq 19,9\ .

  • Câu 29: Vận dụng

    Chiều cao của cây gần nhất với giá trị nào sau đây

    Từ vị trí A người ta quan sát một cây cao (hình vẽ).

    Biết AH = 4m,HB = 20m,\widehat{BAC} =
45^{0}.

    Chiều cao của cây gần nhất với giá trị nào sau đây?

    Trong tam giác AHB, ta có \tan\widehat{ABH} = \frac{AH}{BH} = \frac{4}{20} =
\frac{1}{5} \overset{}{ightarrow}\widehat{ABH} \approx
11^{0}19'.

    Suy ra \widehat{ABC} = 90^{0} -
\widehat{ABH} = 78^{0}41'.

    Suy ra \widehat{ACB} = 180^{0} - \left(
\widehat{BAC} + \widehat{ABC} ight) = 56^{0}19'.

    Áp dụng định lý sin trong tam giác ABC, ta được \frac{AB}{\sin\widehat{ACB}} =
\frac{CB}{\sin\widehat{BAC}} \overset{}{ightarrow}CB =
\frac{AB.sin\widehat{BAC}}{\sin\widehat{ACB}} \approx 17m.

  • Câu 30: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 31: Thông hiểu

    Tính độ dài cạnh BC

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 32: Nhận biết

    Tính giá trị lượng giác

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 33: Nhận biết

    Tính độ dài cạnh b

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 34: Nhận biết

    Chọn đáp án đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có hệ thức đúng là: sin^{2}\alpha + cos^{2}\alpha = 1.

  • Câu 35: Thông hiểu

    Chọn đáp án đúng

    Giá trị của biểu thức A = \sin^{2}51^{0} +\sin^{2}55^{0} + \sin^{2}39^{0} + \sin^{2}35^{0} là:

    Ta có:

    A = \left( \sin^{2}51^{0} + \sin^{2}39^{0}\right) + \left( \sin^{2}55^{0} + \sin^{2}35^{0} \right)

    = \left( \sin^{2}51^{0} + \cos^{2}51^{0}\right) + \left( \sin^{2}55^{0} + \cos^{2}55^{0} \right) = 2.

  • Câu 36: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 5;12;13 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiêu?

    Ta có: p = \frac{5 + 12 + 13}{2} =
15.

    5^{2} + 12^{2} = 13^{2} \Rightarrow S
= \frac{1}{2}.5.12 = 30.

    Mặt khác S = p.r \Rightarrow r =
\frac{S}{p} = 2.

  • Câu 37: Thông hiểu

    Tính diện tích tam giác

    Cho tam giác ABCa = 4,b = 6,c = 8. Khi đó diện tích của tam giác là:

    Ta có:

    p = \frac{a + b + c}{2} = \frac{4
+ 6 + 8}{2} = 9.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p - c)}
= 3\sqrt{15}.

  • Câu 38: Vận dụng

    Tính bán kính đường tròn ngoại tiếp tam giác

    Tam giác ABC vuông tại A có đường cao AH = \frac{12}{5}cm\frac{AB}{AC} = \frac{3}{4}. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

    Tam giác ABC vuông tại A, có đường cao AH \Rightarrow AB.AC = AH^{2}\ \ \ \ \ \
(*).

    Mặt khác \frac{AB}{AC} = \frac{3}{4}
\Leftrightarrow AB = \frac{3}{4}AC thế vào (*), ta được

    \frac{3}{4}AC^{2} = \left( \frac{12}{5}
\right)^{2} \Leftrightarrow AC = \frac{8\sqrt{3}}{5}.

    Suy ra AB =\frac{3}{4}.\frac{8\sqrt{3}}{5} = \frac{6\sqrt{3}}{5}\Rightarrow BC =\sqrt{AB^{2} + AC^{2}} = 2\sqrt{3}.

    Vậy bán kính cần tìm là R = \frac{BC}{2}
= \sqrt{3}\ \ cm.

  • Câu 39: Thông hiểu

    Tính giá trị lượng giác

    Giá trị α, (0° ≤ α ≤ 180°) thoả mãn \tanα = 1,607 gần nhất với giá trị:

    Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.

    Vậy α ≈ 58°

  • Câu 40: Nhận biết

    Tính diện tích tam giác

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hệ thức lượng trong tam giác KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo