Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm điểm thuộc miền nghiệm hệ bất phương trình

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 2: Vận dụng cao

    Tìm độ dài bán kính của đường tròn

    Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight| là đường tròn cố định có bán kính R. Tính bán kính R theo a.

    Gọi G là trọng tâm của tam giác ABC. Ta có

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) + 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 4\left(\overrightarrow{MI} + \overrightarrow{IC} ight).

    Chọn điểm I sao cho 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow 3\left(\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} ight)+ \overrightarrow{IC} - \overrightarrow{IA} =\overrightarrow{0}.

    G là trọng tâm của tam giác ABCnên \overrightarrow{IA} + \overrightarrow{IB} +
\overrightarrow{IC} = 3\ \overrightarrow{IG}.

    Khi đó \overrightarrow{IG} +\overrightarrow{IC} - \overrightarrow{IA} = \overrightarrow{0}\Leftrightarrow 9\ \overrightarrow{IG} + \overrightarrow{AI} +\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow \overrightarrow{IG} = \overrightarrow{CA}. (*)

    Do đó \left| 2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC} ight| = \left|\overrightarrow{MB} - \overrightarrow{MA} ight|\Leftrightarrow \left|9\overrightarrow{MI} + 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} ight| = \left| \overrightarrow{AB} ight|\Leftrightarrow 9MI = AB.

    I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính R
= \frac{AB}{9} = \frac{a}{9}.

  • Câu 3: Thông hiểu

    Tìm hệ thức sai

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    Phương án \left( \overrightarrow{AB},\
\overrightarrow{BC} \right) = 130^{o}: \left( \overrightarrow{AB},\ \overrightarrow{BC}
\right) = 180^{0} - \left( \overrightarrow{AB},\ \overrightarrow{CB}
\right) = 130^{o} nên loại.

    Phương án \left( \overrightarrow{BC},\
\overrightarrow{AC} \right) = 40^{o}: \left( \overrightarrow{BC},\ \overrightarrow{AC}
\right) = \left( \overrightarrow{CB},\ \overrightarrow{CA} \right) =
40^{o} nên loại.

    Phương án \left( \overrightarrow{AB},\
\overrightarrow{CB} \right) = 50^{o}: \left( \overrightarrow{AB},\ \overrightarrow{CB}
\right) = \left( \overrightarrow{BA},\ \overrightarrow{BC} \right) =
50^{o} nên loại .

    Phương án \left( \overrightarrow{AC},\
\overrightarrow{CB} \right) = 120^{o}:\left( \overrightarrow{AC},\ \overrightarrow{CB}
\right) = 180^{0} - \left( \overrightarrow{CA},\ \overrightarrow{CB}
\right) = 140^{o}nên chọn.

  • Câu 4: Thông hiểu

    Chọn phương án đúng

    Cho tập hợp C_{\mathbb{R}}A =
\left\lbrack - 3;\sqrt{8} \right), C_{\mathbb{R}}B = ( - 5;2) \cup \left(
\sqrt{3};\sqrt{11} \right). Tập C_{\mathbb{R}}(A \cap B)là:

    Ta có:

    C_{\mathbb{R}}A = \left\lbrack -
3;\sqrt{8} \right), C_{\mathbb{R}}B
= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} \right) = \left( - 5;\
\sqrt{11} \right)

    A = ( - \infty;\  - 3) \cup \left\lbrack
\sqrt{8}; + \infty \right), B = ( -
\infty; - 5\rbrack \cup \left\lbrack \sqrt{11}; + \infty
\right).

    \Rightarrow A \cap B = ( - \infty; -
5\rbrack \cup \left\lbrack \sqrt{11}; + \infty \right) \Rightarrow
C_{\mathbb{R}}(A \cap B) = \left( - 5;\sqrt{11} \right).

  • Câu 5: Thông hiểu

    Biểu diễn vectơ qua các vectơ khác

    Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?

     

    Ta có: \overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AD}  = \frac{2}{3}.\frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )= \frac{1}{3}(2\overrightarrow {AF}  + 2\overrightarrow {AE} ) = \frac{2}{3}\overrightarrow {AF}  + \frac{2}{3}\overrightarrow {AE}.

  • Câu 6: Thông hiểu

    Tìm câu sai

    Cho tam giác ABC. Đẳng thức nào sai ?

    Ta có:

    A + B + C = 180^{0}

    \Rightarrow \frac{A + B + 2C}{2} =
90^{0} + \frac{C}{2}

    \Rightarrow \cos\left( \frac{B + C}{2}
\right) = \cos\left( 90^{0} + \frac{C}{2} \right)

    \Leftrightarrow \cos\left( \frac{B +
C}{2} \right) = - \sin\frac{C}{2}.

  • Câu 7: Vận dụng

    Tìm bất phương trình thỏa mãn

    Tìm bất phương trình thỏa mãn miền được tô màu xám. (không kể bờ d)

    Đường thẳng d có dạng y = ax + b đi qua hai điểm ( - 1;0)(0,1).

    Thay tọa độ hai điểm này vào d: \left\{ \begin{matrix}
0 = a. - 1 + b \\
1 = a.0 + b \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  ight..

    Vậy d có dạng y = x + 1 \Leftrightarrow x - y + 1 =
0.

    Thay điểm O(0;0) vào d : 0 - 0 + 1
> 0. Suy ra phần màu xám (không chứa O) là nghiệm của bất phương trình x - y + 1 < 0.

  • Câu 8: Thông hiểu

    Tìm điểm thỏa mãn

    Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x + y - 3 > 0?

    Xét điểm M\left( 1;\frac{3}{2}ight) . Ta có: 2.1 + \frac{3}{2}- 3 = \frac{1}{2} > 0 nên M\left( 1;\frac{3}{2} ight) thuộc miền nghiệm của bất phương trình đã cho.

  • Câu 9: Thông hiểu

    Chọn đẳng thức đúng

    Cho các điểm phân biệt A,\ B,\ C,\
D. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB},\ \overrightarrow{DC} -
\overrightarrow{BC} = \overrightarrow{DC} + \overrightarrow{CB} =
\overrightarrow{DB}.

    Vậy: \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DC} -
\overrightarrow{BC}.

  • Câu 10: Vận dụng

    Tìm giá trị lớn nhất

    Giá trị lớn nhất F_{\max} của biểu thức F(x;y) = x + 2y trên miền xác định bởi hệ \left\{ \begin{matrix}
0 \leq y \leq 4 \\
x \geq 0 \\
x - y - 1 \leq 0 \\
x + 2y - 10 \leq 0 \\
\end{matrix} ight.

    Trong mặt phẳng tọa độ Oxy,vẽ các đường thẳng d_{1}:x - y - 1 = 0 d_{2}:x + 2y - 10 = 0, \Delta:y = 4.

    Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.

    Xét các đỉnh của miền khép kín tạo bởi hệ là O(0;0),A(1;0), B(4;3),C(2;4),D(0;4).

    Ta có \left\{ \begin{matrix}
F(0;0) = 0 \\
F(1;0) = 1 \\
F(4;3) = 10 \\
F(2;4) = 10 \\
F(0;4) = 8 \\
\end{matrix} ight. \overset{}{ightarrow}F_{\max} = 10.

  • Câu 11: Nhận biết

    Tìm bất phương trình bậc nhất hai ẩn

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Chọn đáp án 2x + 3y < 5 vì theo định nghĩa bất phương trình bậc nhất hai ẩn.

  • Câu 12: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho tập hợp A =
(0; + \infty)B = \left\{x\in\mathbb{ R}|mx^{2} - 4x + m - 3 = 0 ight\}, với m là tham số. Tìm m để B có đúng hai tập con và B \subset A?

    B có đúng hai tập con và B \subset A khi và chỉ khi phương trình mx^{2} - 4x + m - 3 = 0 (1) có đúng một nghiệm dương.

    Trường hợp 1. m = 0, phương trình (1) trở thành - 4x - 3 = 0
\Leftrightarrow x = - \frac{3}{4}

    Do đó m = 0 không thỏa đề bài.

    Trường hợp 2. m eq 0, khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi

    \left\{ \begin{matrix}\Delta' = 0 \\S > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4 - m(m - 3) = 0 \\\dfrac{4}{m} > 0 \\\end{matrix} ight.

    \Leftrightarrow m = 4

    Vậy m = 4 là giá trị duy nhất thỏa mãn yêu cầu đề bài.

  • Câu 13: Nhận biết

    Xác định tọa độ vectơ

    Trong mặt phẳng Oxy, cho A\left( x_{A};y_{A} \right)\ và\ \
B\left( x_{B};y_{B} \right). Tọa độ của vectơ \overrightarrow{AB}

    Theo công thức tọa độ vectơ \overrightarrow{AB} = \left( x_{B} - x_{A};y_{B} -
y_{A} \right).

  • Câu 14: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 15: Thông hiểu

    Tìm nghiệm của bất phương trình

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 16: Vận dụng cao

    Chọn khẳng định đúng

    Cho tam giác ABC thỏa mãn biểu thức

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    Chọn khẳng định đúng.

    Ta có:

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\cot^{2}\widehat{B} + \cot^{2}\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} -2

    \Leftrightarrow \left(\sin^{2}\widehat{B} + \sin^{2}\widehat{C} ight)\left(\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} ight) =4

    \Leftrightarrow\dfrac{\sin^{2}\widehat{B}}{\sin^{2}\widehat{C}} +\dfrac{\sin^{2}\widehat{C}}{\sin^{2}\widehat{B}} - 2 = 0

    \Leftrightarrow \left(\dfrac{\sin\widehat{B}}{\sin\widehat{C}} -\dfrac{\sin\widehat{C}}{\sin\widehat{B}} ight)^{2} = 0

    \Leftrightarrow \sin\widehat{B} =
\sin\widehat{C}

    \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân.

  • Câu 17: Vận dụng

    Phân tích một vectơ theo hai vectơ khác

    Cho các vectơ \overrightarrow{a} = (4; - 2),\overrightarrow{b} =
( - 1; - 3),\overrightarrow{c} = (2;5). Phân tích vectơ \overrightarrow{b} theo hai vectơ \overrightarrow{a}\ và\
\overrightarrow{c}, ta được:

    Giả sử \overrightarrow{b} =m\overrightarrow{a} + n\overrightarrow{c} \Leftrightarrow \left\{\begin{matrix}- 1 = 4m + 2n \\- 3 = - 2m + 5n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{1}{24} \ = - \frac{7}{12} \\\end{matrix} ight.. Vậy \overrightarrow{b} =
\frac{1}{24}\overrightarrow{a} -
\frac{7}{12}\overrightarrow{c}.

  • Câu 18: Vận dụng

    Tính cường độ lực

    Cho ba lực \overrightarrow{F_{1}} =
\overrightarrow{MA},\overrightarrow{F_{2}} =
\overrightarrow{MB},\overrightarrow{F_{3}} =
\overrightarrow{MC} cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \overrightarrow{F_{1}},\overrightarrow{F_{2}} đều bằng 100N\widehat{AMB} = 60^{0}. Khi đó cường độ lực của \overrightarrow{F_{3}} là:

    C:\Users\admin\Desktop\Hình vẽ hay\HÌNH.10.NHẬP\C1-3-Hiệu hai vec tơ\48,49.png

    Gọi I là trung điểm của AB.MAB là tam giác đều nên MI = MA.\frac{\sqrt{3}}{2} =
50\sqrt{3}.

    Vậy MC = 2MI = 100\sqrt{3}N

    Vậy: \overrightarrow{F_{3}} có cường độ 100\sqrt{3}\ N.

  • Câu 19: Nhận biết

    Chọn đáp án đúng

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 20: Nhận biết

    Tính góc giữa hai vectơ

    Cho tam giác đều ABC. Tính \left( \overrightarrow{BC},\overrightarrow{AC}
\right)?

    Ta có:

    \left( \overrightarrow{BC},\
\overrightarrow{AC} \right) = \widehat{ACB} = 60^{0}

  • Câu 21: Vận dụng

    Chọn khẳng định sai

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 22: Thông hiểu

    Chọn phương án thích hợp

    Viết giá trị gần đúng của \sqrt{10} đến hàng phần trăm (dùng MTBT):

    + Ta có: \sqrt{10} =
3,16227766.

    + Cần lấy chính xác đến hàng phần trăm nên ta phải lấy 2 chữ số thập phân.

    Vì đứng sau số 6 ở hàng phần trăm là số 2 < 5 nên theo nguyên lý làm tròn ta được kết quả là 3,16.

  • Câu 23: Nhận biết

    Tìm mốt của mẫu số liệu

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

  • Câu 24: Nhận biết

    Tìm mệnh đề đúng

    Cho hai tập hợp A = \left\{ 0;1;2;3;4
\right\},\ B = \left\{ 1;3;4;6;8 \right\}. Mệnh đề nào sau đây đúng?

    Đáp án cần tìm là: A\backslash B =
\left\{ 0;2 \right\}.

  • Câu 25: Thông hiểu

    Tìm điều kiện để hai vectơ cùng phương

    Cho \overrightarrow{a} =
(2016\sqrt{2015};0),\ \overrightarrow{b} = (4;x). Hai vectơ \overrightarrow{a},\overrightarrow{b} cùng phương nếu

    Ta có: \overrightarrow{a},\overrightarrow{b} cùng phương \Leftrightarrow
\overrightarrow{a} = k.\overrightarrow{b} \Rightarrow x =
0.

  • Câu 26: Vận dụng cao

    Điền đáp án vào ô trống

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Đáp án là:

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: x,y (ha)

    Điều kiện: x,y \geq 0

    Số tiền cần bỏ ra để thuê người trồng hoa là 30y.100000 = 3000000y (trồng).

    Lợi nhuận thu được là

    f(x;y) = 1000000x + 12000000 -
3000000y

    \Rightarrow f(x;y) = 10000000x +
9000000y (đồng).

    Vì số công trồng rau không vượt quá 80 nên 20x
\leq 80 \Leftrightarrow x \leq 4

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 10 \\
0 \leq x \leq 4 \\
y \geq 0 \\
\end{matrix} ight.\ (*)

    Ta cần tìm giá trị lớn nhất của f(x;y) trên miền nghiệm của hệ (*).

    Miền nghiệm của hệ (*) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là toạ độ của một trong các đỉnh O(0;0),A(4;0),B(4;6),C(0;10).

    => f(x;y) lớn nhất khi (x;y) = (4;6)

    Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất

  • Câu 27: Nhận biết

    Tính số đo góc A

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 28: Nhận biết

    Chọn mệnh đề đúng

    Gọi O là giao điểm của hai đường chéo hình chữ nhật ABCD. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: \left|
\overrightarrow{AC} \right| = \left| \overrightarrow{BD}
\right|.

  • Câu 29: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 30: Vận dụng

    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \cos\alpha = \frac{3}{5}\frac{\pi}{4} < \alpha <
\frac{\pi}{2}. Tính P =
\sqrt{tan^{2}\alpha - 2tan\alpha + 1}.

    Ta có P = \sqrt{\left( \tan\alpha - 1
ight)^{2}} = \left| \tan\alpha - 1 ight|.

    \frac{\pi}{4} < \alpha <
\frac{\pi}{2}\overset{}{ightarrow}\tan\alpha > 1 \overset{}{ightarrow}P = \tan\alpha -
1.

    Theo giả thiết: \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{4}{5} \\
\frac{\pi}{4} < \alpha < \frac{\pi}{2} \\
\end{matrix} ight. ightarrow
\sin\alpha = \frac{4}{5} ightarrow \tan\alpha = \frac{4}{3}
ightarrow P = \frac{1}{3}

  • Câu 31: Thông hiểu

    Tính tích vô hướng

    Cho hình thang vuông ABCDcó đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD . Khi đó \left( \overrightarrow{IA} + \overrightarrow{IB}
\right).\overrightarrow{ID} bằng:

    Ta có:

    \left( \overrightarrow{IA} +\overrightarrow{IB} \right).\overrightarrow{ID} = \left(\overrightarrow{IA} + \overrightarrow{IA} + \overrightarrow{AB}\right).\overrightarrow{ID}

    = 2\overrightarrow{IA}.\overrightarrow{ID} =- \frac{9a^{2}}{2}.

  • Câu 32: Nhận biết

    Xác định vectơ theo yêu cầu

    Cho bốn điểm A,B,C,D phân biệt. Khi đó vectơ \overrightarrow{u} =
\overrightarrow{AD} + \overrightarrow{BA} + \overrightarrow{CB} +
\overrightarrow{DC} bằng:

    Ta có:

    \overrightarrow{u} =
\overrightarrow{AD} + \overrightarrow{BA} + \overrightarrow{CB} +
\overrightarrow{DC}

    = \overrightarrow{AD} +
\overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BA} =
\overrightarrow{0}.

  • Câu 33: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ tan\alpha trái dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai thì \sin\alpha >
0, \cos\alpha < 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ tư thì \sin\alpha <
0, \cos\alpha > 0.

    Vậy nếu \sin\alpha,\ cos\alpha trái dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ II hoặc IV.

  • Câu 34: Vận dụng

    Mệnh đề nào sau đây đúng?

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}.

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MB} +\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AD}=\overrightarrow{AD} + \overrightarrow{BC} + \left( \overrightarrow{MA} +\overrightarrow{MB} ight) = \overrightarrow{AD} +\overrightarrow{BC}

    Mặt khác \overrightarrow{AC} +\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +\overrightarrow{CD}= \overrightarrow{BC} + \left( \overrightarrow{AC} +\overrightarrow{CD} ight) = \overrightarrow{BC} +\overrightarrow{AD}

    Do đó \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

  • Câu 35: Vận dụng

    Tính diện tích tam giác ABC

    Tam giác ABC có hai đường trung tuyến BM,\ CN vuông góc với nhau và có BC = 3, góc \widehat{BAC} = 30^{0}. Tính diện tích tam giác ABC.

    BM\bot CN \Rightarrow 5a^{2} = b^{2} +
c^{2}. (Áp dụng hệ quả đã có trước)

    Trong tam giác ABC, ta có

    a^{2} = b^{2} + c^{2} - 2bc.\cos A = 5a^{2} -2bc\cos A

    \Rightarrow bc = \frac{2a^{2}}{\cos
A}

    Khi đó S = \frac{1}{2}bc\sin A =\frac{1}{2}.\frac{2a^{2}}{\cos A}.\sin A = a^{2}\tan A =3\sqrt{3}.

  • Câu 36: Vận dụng

    Tính độ lệch chuẩn

    Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:

    21^{0}C;23^{0}C;25^{0}C;28^{0}C;30^{0}C;

    32^{0}C;34^{0}C;31^{0}C;29^{0}C;26^{0}C.

    Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình trong ngày là:

    \overline{x} = \frac{21 + 23 + 25 + 28 +
30 + 32 + 34 + 31 + 29 + 26}{10} = 27,9

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    21

    21 - 27,9 = - 6,9

    47,61

    23

    23 - 27,9 = - 4,9

    24,01

    25

    25 - 27,9 = - 2,9

    8,41

    28

    28 - 27,9 = 0,1

    0,01

    30

    30 - 27,9 = 2,1

    4,41

    32

    32 - 27,9 = 4,1

    16,81

    34

    34 - 27,9 = 6,1

    37,21

    31

    31 - 27,9 = 3,1

    9,61

    29

    29 - 27,9 = 1,1

    1,21

    26

    26 - 27,9 = - 1,9

    3,61

    Tổng

    152,9

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{152,9}{10} =
15,29

    Suy ra độ lệch chuẩn của mẫu số liệu là: s = \sqrt{s^{2}} \approx
3,91

  • Câu 37: Nhận biết

    Xác định số quy tròn

    Cho a = 235618
\pm 300. Số quy tròn của số gần đúng 235618 là:

    Số quy tròn của số gần đúng 235618 là: 236000.

  • Câu 38: Thông hiểu

    Xác định độ lệch chuẩn

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 39: Thông hiểu

    Xác định số tập hợp con

    Cho X = \left\{ 2;3;4 \right\}. Tập X có bao nhiêu tập hợp con?

    Các tập hợp con của X là: \varnothing; \left\{ 2 \right\}; \left\{ 3\right\}; \left\{ 4 \right\};\left\{ 2;3 \right\};\left\{ 3;4\right\}; \left\{ 2;4 \right\}; \left\{ 2;3;4\right\}.

  • Câu 40: Nhận biết

    Tìm khoảng tứ phân vị

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 41: Thông hiểu

    Tìm mệnh đề phủ định

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 42: Nhận biết

    Khẳng định nào sau đây là sai.

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 43: Thông hiểu

    Tìm mệnh đề đúng

    Cho tam giác ABC thoả mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có:

    \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R

    \Rightarrow \dfrac{\dfrac{b + c}{2}}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

    \Leftrightarrow \frac{b + c}{2\sin A} =\frac{b + c}{\sin B + \sin C}

    \Leftrightarrow \sin B + \sin C =2\sin A

  • Câu 44: Nhận biết

    Chọn phương án thích hợp

    Trong các câu sau đây, câu nào là mệnh đề?

    Vì đáp án C là một câu khẳng định đúng.

  • Câu 45: Thông hiểu

    Tìm số trung bình của mẫu số liệu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo