Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 9 Tính xác suất theo định nghĩa cổ điển

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 9 Tính xác suất theo định nghĩa cổ điển sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ

    Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.

    Chọn 3 bạn bất kì từ 10 bạn, suy ra n(\Omega)=C_{10}^3=120.

    Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".

    Trường hợp 1: 3 bạn nữ

    Có: C_4^3 = 4 (cách)

    Trường hợp 2: 2 bạn nữ + 1 bạn nam

    Có: C_4^2.C_6^1 = 36 (cách)

    Trường hợp 3: 1 bạn nữ + 2 bạn nam

    Có: C_4^1.C_6^2 = 60 (cách)

    Vậy n(A)=4+36+60=100.

    Xác suất P(A)=\frac{100}{120}=\frac56.

  • Câu 2: Vận dụng

    Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?

    Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?

    Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O\Rightarrow n(\Omega) = C_{20}^{4} =
4845.

    Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”

    Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là: n(A) = C_{10}^{2} = 45.

    P(A) = \frac{45}{4845} =
\frac{3}{323}.

  • Câu 3: Nhận biết

    Chọn phát biểu đúng

    Phát biểu nào sau đây đúng?

    Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.

  • Câu 4: Vận dụng

    Xác suất để xạ thủ này đạt loại giỏi bằng là

    Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng trong vòng 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi bằng là:

    Gọi H là biến cố: “Xạ thủ bắn đạt loại giỏi”. A; B; C; D là các biến cố sau:

    A: “Ba viên trúng vòng 10”;

    B: “Hai viên trúng vòng 10 và một viên trúng vòng 9”;

    C: “Một viên trúng vòng 10 và hai viên trúng vòng 9”;

    D: “Hai viên trúng vòng 10 và hai viên trúng vòng 8”.

    Các biến cố A; B; C; D là các biến cố xung khắc từng đôi một nên

    H = A \cup B \cup C \cup D.

    Áp dụng quy tắc cộng mở rộng ta có:

    P(H) = P(A) + P(B) + P(C) +
P(D).

    P(A) = (0,2).(0,2).(0,2) =
0,008;

    P(B) = (0,2).(0,2).(0,25) +
(0,2).(0,25).(0,2) + (0,25).(0,2).(0,2) = 0,03;

    P(C) = (0,2).(0,25).(0,25) +
(0,25).(0,2).(0,25) + (0,25).(0,25).(0,2) = 0,0375

    P(D) = (0,2).(0,2).(0,15) +
(0,2).(0,15).(0,2) + (0,15).(0,2).(0,2) = 0,018.

    Do đó P(H) = 0,008 + 0,03 + 0,0375 +
0,018 = 0,0935.

  • Câu 5: Thông hiểu

    Tính xác suất để hai quả cầu cùng màu

    Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?

    Ta có: n(\Omega) = C_{10}^{2} =
45

    Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”

    TH1: 2 quả cầu cùng màu xanh ta có: C_{3}^{2} cách chọn

    TH2: 2 quả cầu cùng màu đỏ ta có: C_{7}^{2} cách chọn.

    \Rightarrow n(A) = C_{3}^{2} + C_{7}^{2}
= 24

    Vậy xác suất của biến cố A là: P(A) =
\frac{24}{45} = \frac{8}{15}

  • Câu 6: Nhận biết

    Mô tả không gian mẫu

    Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:

     Mô tả không gian mẫu: \Omega = \{XD; XV; DV; DX; VX; VD; XX; VV; DD\}

    (Xanh là X, đỏ là D, vàng là V).

  • Câu 7: Vận dụng

    Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?

    Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?

    Số phần tử của tập S9.10 = 90.

    Không gian mẫu là chọn ngẫu nhiên 2 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{90}^{2} = 4005.

    Gọi X là biến cố ''Số được ó chữ số hàng đơn vị giống nhau''. Ta mô tả không gian của biến cố X nhưu sau

    ● Có 10 cách hữ số hàng đơn vị (chọn từ các chữ số \left\{ 0;\ 1;\ 2;\
3;...;\ 9 ight\}).

    ● Có C_{9}^{2} cách chọn hai chữ số hàng chục (chọn từ các chữ số \left\{ 1;\
2;\ 3;...;\ 9 ight\}).

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| = 10.C_{9}^{2}
= 360.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} = \frac{360}{4005} =
\frac{8}{89}..

  • Câu 8: Nhận biết

    Xác suất để 3 bạn được chọn đều là nam là:

    Trong một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 3 bạn trong tổ tham gia đội tình nguyện của trường. Xác suất để 3 bạn được chọn đều là nam là:

    Xét phép thử: Chọn ngẫu nhiên 3 trong 10 bạn trong tổ, ta có n(\Omega) = C_{10}^{3}.

    Gọi A là biến cố: “ 3 bạn được chọn toàn nam”, ta có n(A) = C_{6}^{3}.

    Xác suất của biến cố A\ :\ P(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{6}^{3}}{C_{10}^{3}} =
\frac{1}{6}.

  • Câu 9: Nhận biết

    Tính xác suất để hai thẻ đều mang số chẵn

    Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?

    Từ 1 đến 10 có 5 số chẵn.

    Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:

    n(\Omega) = C_{10}^{2} = 45

    Số cách chọn được hai tấm thẻ đều ghi số chẵn là: n(A) = C_{5}^{2} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{45} = \frac{2}{9}

  • Câu 10: Thông hiểu

    Tính xác suất của biến cố B

    Một hộp có 5 quả cầu được đánh số từ 1 đến 5 (hai quả cầu khác nhau thì đánh số khác nhau). Lấy ngẫu nhiên liên tiếp 2 quả cầu. Tính xác suất của biến cố B: “Tích các số trên hai quả cầu là số chẵn”?

    Ta có không gian mẫu:

    \Omega =
\{(1;2),(1;3),(1;4),(1;5),(2;3),

    (2;4),(2;5),(3;4),(3;5),(4;5)\}

    \Rightarrow n(\Omega) = 10

    Biểu diễn biến cố B là:

    B = \left\{
(1;2),(1;4),(2;3),(2;4),(2;5),(3;4),(4;5) ight\}

    \Rightarrow n(B) = 7

    Vậy xác suất của biến cố B cần tìm là: P(B) = \frac{n(B)}{n(\Omega)} =
\frac{7}{10}

  • Câu 11: Nhận biết

    Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Hộp A4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu: 15.18 =
270.

    Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 4.7 + 5.6 + 6.5 = 88.

    Vậy xác suất cần tìm là \frac{88}{270} =
\frac{44}{135}.

  • Câu 12: Nhận biết

    Xác suất luôn lấy được 1 bóng hỏng là:

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 13: Nhận biết

    Tìm biến cố đối của biến cố A

    Gieo ngẫu nhiên một xon xúc xắc cân đối, đồng chất 1 lần. Gọi A là biến cố “số chấm xuất hiện trên con xúc xắc bé hơn 3”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Số chấm xuất hiện trên con xúc xắc không bé hơn 3.”

  • Câu 14: Nhận biết

    Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cho phép thử có không gian mẫu \Omega = \left\{ 1,2,3,4,5,6 ight\}. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cặp biến cố không đối nhau là E = \left\{
1,\ 4,\ 6 ight\}F = \left\{
2,\ 3 ight\} do E \cap F =
\varnothingE \cup F eq
\Omega.

  • Câu 15: Nhận biết

    Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 16: Vận dụng

    Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?

    Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp M = \left\{ 1;2;3;...;2019
ight\}. Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?

    Có tất cả C_{2019}^{3} cách chọn 3 số tự nhiên từ tập hợp M = \left\{
1;2;3;...;2019 ight\}.

    Suy ra n(\Omega) =
C_{2019}^{3}.

    Xét biến cố A: “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.

    Ta có \overline{A}: “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.

    Xét các trường hợp sau:

    + Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:

    - Nếu 2 số liên tiếp là \left\{ 1;2
ight\} hoặc \left\{ 2018;2019
ight\} thì số thứ ba có 2019 - 3
= 2016 cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).

    - Nếu 2 số liên tiếp là \left\{ 2;3
ight\}, \left\{ 3;4
ight\},.,\left\{ 2017;2018
ight\} thì số thứ ba có 2019 - 4
= 2015 cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).

    Trường hợp này có 2.2016 + 2016.2015 =
4066272 cách chọn.

    + Trường hợp 2: Chọn được 3 số liên tiếp.

    Tức là chọn các bộ \left\{ 1;2;3
ight\}, \left\{ 2;3;4
ight\},.,\left\{ 2017,2018,2019
ight\}: có tất cả 2017 cách.

    Suy ra n\left( \overline{A} ight) =
4066272 + 2017 = 4068289.

    Vậy P = P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{4068289}{C_{2019}^{3}} =
\frac{1365589680}{1369657969} = \frac{677040}{679057}.

  • Câu 18: Nhận biết

    Tính xác suất để lấy đủ 3 loại thực phẩm

    Trong chiếc túi du lịch của anh X gồm 3 hộp thịt, 2 hộp cam và 3 hộp cơm. Vì một vài lí do mà những chiếc hộp đều bị mất nhãn. Anh X chọn ngẫu nhiên 3 hộp. Tính xác suất để 3 hộp có đủ 3 loại thực phẩm?

    Chọn ngẫu nhiên 3 hộp từ 8 hộp ta có n(\Omega) = C_{8}^{3}

    Để chọn được một hộp thịt; một hộp quả và 1 hộp sữa ta có số cách chọn là:

    C_{3}^{1}.C_{2}^{1}.C_{3}^{1}

    Vậy xác suất cần tìm là: P =
\frac{C_{3}^{1}.C_{2}^{1}.C_{3}^{1}}{n(\Omega)} =
\frac{9}{28}.

  • Câu 20: Thông hiểu

    Tính xác suất để tích hai số là số chẵn

    Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?

    Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.

    Ta có: n(\Omega) = C_{15}^{2} =
105

    Gọi A là biến cố “Tích hai số được chọn là một số chẵn”

    TH1: 1 số lẻ và 1 số chẵn ta có: 7.8 cách chọn

    TH2: 2 số chẵn ta có: C_{7}^{2} cách chọn

    \Rightarrow n(A) = 7.8 + C_{7}^{2} =
77

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{77}{105} = \frac{11}{15}

  • Câu 21: Vận dụng

    Xác suất để tích hai số chọn được là một số chẵn

    Gọi S là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ \{ 0;1;2;3;4;5;6\}. Chọn ngẫu nhiên 2 số từ tập S. Xác suất để tích hai số chọn được là một số chẵn là:

    Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.

    Gọi \overline{ab} là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho

    Số cách chọn a là 6 cách; Số cách chọn b cách Số các số có hai chữ số khác nhau tạo được là 6.6 = 36 số. Suy ra S36 phần tử.

    Số cách lấy ngẫu nhiên 2 số từ tập S: C_{36}^{2}
= 630 cách

    Gọi biến cố A: “Tích hai số được chọn là một số chẵn”

    Gọi biến cố \overline{A}: “Tích hai số được chọn là một số lẻ”

    Số các số lẻ trong S: 3.5 = 15 (3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).

    Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: C_{15}^{2} = 105 cách

    Suy ra P(\overline{A}) = \frac{105}{630}
= \frac{1}{6}. Vậy P(A) = 1 -
P(\overline{A}) = \frac{5}{6}.

  • Câu 22: Nhận biết

    Tính xác suất để mặt 4 chấm xuất hiện

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất để mặt 4 chấm xuất hiện là:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

  • Câu 23: Nhận biết

    Xác suất lấy được toàn màu đỏ là:

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 24: Nhận biết

    Phép thử ngẫu nhiên này có không gian mẫu là:

    Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:

    Liệt kê các phần tử: \left\{ NNN,\ SSS,\
NNS,\ SSN,\ NSN,\ SNS,\ NSS,SNN ight\}.

  • Câu 25: Vận dụng

    Xác suất để lấy các viên bi có cùng màu

    Cho biết:

    Hộp 1: chứa 4 viên bi đỏ và 3 viên bi xanh.

    Hộp 2: chứa 5 viên bi đỏ và 2 viên bi xanh.

    Lấy ngẫu nhiên từ mỗi hộp 2 viên bi. Xác suất để lấy các viên bi có cùng màu bằng:

    Lấy ngẫu nhiên 2 viên bi từ hộp 1 ta có: C_{7}^{2} = 21

    Lấy ngẫu nhiên 2 viên bi từ hộp 2 ta có: C_{7}^{2} = 21

    Ta có số phần tử không gian mẫu là: n(\Omega) = 21.21 = 441

    Gọi A là biến cố các viên bi lấy ra cùng màu.

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2}.C_{5}^{2} + C_{3}^{2}.C_{2}^{2}

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{7}

  • Câu 26: Nhận biết

    Tính xác suất của biến cố

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

  • Câu 28: Vận dụng

    Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?

    Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp. Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?

    Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{12}^{2} = 66.

    Gọi A là biến cố ''2 viên bi được lấy vừa khác màu vừa khác số''.

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi đỏ là 4.4 = 16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi vàng là 3.4 = 12 cách.

    ● Số cách lấy 2 viên bi gồm 1 bi đỏ và 1 bi vàng là 3.3 = 9 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 16 + 12 + 9 =
37.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{37}{66}.

  • Câu 29: Nhận biết

    Tính xác suất của biến cố

    Rút ngẫu nhiên một thẻ từ hộp chứa 10 thẻ được đánh số từ 1 đến 10. Tính xác suất của biến cố “Rút được tấm thẻ ghi số chia hết cho 3”.

    Số phần tử của không gian mẫu là: n(\Omega) = 10

    Số kết quả thuận lợi cho biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 3” là:

    A = \left\{ 3;6;9 ight\}

    \Rightarrow n(A) = 3

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{10} = 0,3

  • Câu 30: Nhận biết

    Xác suất để 4 quân bài đều là Át

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 31: Thông hiểu

    Tính xác suất để chọn được số thỏa mãn yêu cầu

    Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn \lbrack
40;60brack. Tính xác suất của biến cố: “Chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục”.

    Từ 40 đến 60 có 21 số nên n(\Omega) =
21

    Các số thỏa mãn yêu cầu đề bài là: 45;45;47;48;49;56;57;58;59

    Suy ra số kết quả thuận lợi cho biến cố: “Chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục” là 9.

    Suy ra xác suất của biến cố cần tìm là \frac{9}{21} = \frac{3}{7}

  • Câu 32: Thông hiểu

    Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6.6 = 36.

    Gọi A là biến cố ''Số chấm xuất hiện trên ba con súc sắc như nhau''. Ta có các trường hợp thuận lợi cho biến cố A(1;1;1),\ (2;2;2),\ (3;3;3),\ \cdots\
,(6;6;6).

    Suy ra \left| \Omega_{A} ight| =
6.

    Vậy xác suất cần tính P(A) =
\frac{1}{36}.

  • Câu 33: Thông hiểu

    Tính xác suất của biến cố

    Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:

    Ta có: n(\Omega) = 2^{3} = 8

    Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”

    \Rightarrow A = \left\{
SSS;SSN;SNS;NSS;NSN;NNS ight\}

    \Rightarrow n(A) = 7

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{7}{8}

  • Câu 34: Thông hiểu

    Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau

    Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

    12 vị trí là hoán vị của 12 học sinh đó.

    Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.

    Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.

    Chia việc xếp thành 2 công đoạn:

    Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.

    Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có A_9^4 cách.

    Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.

    => n\left( A ight) = 8!.A_9^4

     Xác suất biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}

  • Câu 35: Thông hiểu

    Tính xác suất của biến cố B

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là: B = \left\{
(1;1),(1;2),(2;1) ight\}

    \Rightarrow n(B) = 3

    Vậy xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{3}{36} = \frac{1}{12}

  • Câu 36: Thông hiểu

    Tính xác suất của biến cố

    Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.

    Ta có: n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”

    \Rightarrow A =
\{(6;5),(5;6),(5;4),(4;5),(4;3),(3;4),(3;2),(2;3),(2;1),(1;2)\}

    \Rightarrow n(A) = 10

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{5}{18}

  • Câu 37: Nhận biết

    Tính xác suất

    Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:

     Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có 4!=24 (cách). Suy ra n(\Omega)=24.

    Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.

    Vậy xác suất P=\frac1{24}.

  • Câu 38: Nhận biết

    Tính xác suất để cả 6 người là nam

    Một homestay có 6 phòng đơn. Trên trang web của homestay có 6 nam và 4 nữ đặt phòng. Người chủ homestay chọn ngẫu nhiên 6 người cho nhận phòng. Tính xác suất để cả 6 người được chọn là nam?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{6} = 210

    Chọn ngẫu nhiên 6 người đều là nam ta có: C_{6}^{6} = 1 cách chọn

    Vậy xác suất để chọn 6 người đều là nam là: P = \frac{1}{210}.

  • Câu 39: Nhận biết

    Tính xác suất của biến cố A

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?

    Ta có: \overline{A}: "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.

    Theo quy tắc nhân xác suất: P(\overline{A}) =\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}.

    Vậy: P(A) = 1 - P(\overline{A}) = 1 -\frac{1}{8} = \frac{7}{8}.

  • Câu 40: Vận dụng

    Xác suất để 3 đỉnh được chọn tạo thành một tam giác

    Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:

    Số phần tử của không gian mẫu là: n(\Omega) = C_{12}^{3}.

    Gọi A: “Chọn được ba đỉnh tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho”

    Suy ra \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có ít nhất một cạnh là cạnh của đa giác đã cho”.

    Do đó \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có một cạnh hoặc hai cạnh là cạnh của đa giác đã cho”.

    Trường hợp 1: Chọn ra tam giác có 2 cạnh là 2 cạnh của đa giác đã cho, ta chọn ra 3 đỉnh liên tiếp của đa giác 12 cạnh. Có 12 cách.

    Trường hợp 2: Chọn ra tam giác có đúng 1 cạnh là cạnh của đa giác đã cho, ta chọn ra 1 cạnh và 1 đỉnh không liền với 2 đỉnh của cạnh đó. Suy ra có 12 cách chọn một cạnh và C_{8}^{1} = 8 cách chọn đỉnh.

    Vậy có 12.8 cách.

    Số phần tử của biến cố \overline{A} là: n\left( \overline{A} ight) = 12 +
12.8.

    Số phần tử của biến cố A là: n(A) = C_{12}^{3} - 12 - 12.8.

    Xác suất của biến cố AP(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{12}^{3} - 12 -
12.8}{C_{12}^{3}}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 9 Tính xác suất theo định nghĩa cổ điển Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo