Số phần tử của không gian mẫu là bao nhiêu?
Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?
Mô tả không gian mẫu ta có: .
Đề kiểm tra 45 phút Toán 10 Chương 9 Tính xác suất theo định nghĩa cổ điển sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Số phần tử của không gian mẫu là bao nhiêu?
Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?
Mô tả không gian mẫu ta có: .
Tính số phần tử của biến cố A
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Xác suất để cả bốn lần xuất hiện mặt sấp là bao nhiêu?
Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là bao nhiêu?
Mỗi lần suất hiện mặt sấp có xác suất là .
Theo quy tắc nhân xác suất: .
Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
6 viên bi được lấy ra có đủ cả ba màu
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
tức là 6 viên bi lấy ra không có đủ ba màu như sau
TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tìm số phần tử của biến cố A
Một hộp đựng
thẻ, đánh số từ
đến
. Chọn ngẫu nhiên
thẻ. Gọi
là biến cố để tổng số của
thẻ được chọn không vượt quá
. Tìm số phần tử của biến cố
.
Liệt kê ta có: . (4 phần tử)
Tính xác suất để lấy đủ 3 loại thực phẩm
Trong chiếc túi du lịch của anh X gồm 3 hộp thịt, 2 hộp cam và 3 hộp cơm. Vì một vài lí do mà những chiếc hộp đều bị mất nhãn. Anh X chọn ngẫu nhiên 3 hộp. Tính xác suất để 3 hộp có đủ 3 loại thực phẩm?
Chọn ngẫu nhiên 3 hộp từ 8 hộp ta có
Để chọn được một hộp thịt; một hộp quả và 1 hộp sữa ta có số cách chọn là:
Vậy xác suất cần tìm là: .
Xác định biến cố đối của biến cố A
Xét một phép thử có không gian mẫu
gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là
Biến cố đối của biến cố A là biến cố “A không xảy ra”.
Tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tính xác suất để 6 quả cầu có ít nhất 1 màu đỏ
Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.
Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.
Số phần tử của biến cố B là:
Xác suất của biến cố B là:
Vậy xác suất của biến cố A cần tìm là:
Tìm mệnh đề đúng
Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là:
Tính xác suất để 3 quyển được lấy ra có cả 3 môn.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc 3 môn khác nhau là .
Suy ra xác suất cần tìm là .
Xác định số phần tử không gian mẫu
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.
Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là:
Xác suất để trong ba số được chọn không có hai số liên tiếp bằng
Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:
Không gian mẫu có số phần tử là: (phần tử).
Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.
Khi đó ta có các trường hợp sau:
Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.
Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.
Do đó trường hợp này có: 2.13 = 26 cách lấy.
Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.
Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.
Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.
Xác suất để trong ba số được chọn không có hai số liên tiếp là: .
Xác suất để tổng các số là số chẵn
Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?
Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.
Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.
2 số được chọn là 2 số chẵn ta có: cách chọn.
2 số được chọn là 2 số lẻ ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Vậy xác suất của biến cố A là:
Xác suất để chọn được một tam giác từ tập X
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:
Số các tam giác bất kỳ là .
Số các tam giác đều là .
Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.
Số các tam giác cân là: 18.8 = 144.
Số các tam giác cân không đều là: .
Xác suất cần tìm là .
Chọn công thức tính xác suất
Cho một phép thử
có không gian mẫu
. Giả thiết rằng các kết quả có thể của
là đồng khả năng. Khi đó nếu
là một biến cố liên quan đến phép thử
thì xác suất của
(kí hiệu là
) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt là
.
Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức .
Tìm cặp biến cố không phải là biến cố đối.
Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.
Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.
Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.
Không gian mẫu là chọn tùy ý người từ
người.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
4 người được ó ít nhất 3 nữ
. Ta có hai trường hợp thuận lợi cho biến cố
như sau:
TH1:: Chọn 3 nữ và 1 nam, có cách.
TH2:: Cả 4 nữ, có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tính xác suất để 4 bạn đều là nữ
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Tìm mệnh đề đúng
Cho A là biến cố liên quan đến phép thử có không gian mẫu
. Tìm mệnh đề đúng.
Theo định nghĩa xác suất cổ điển, cho phép thử T có không gian mẫu . Giả thiết rằng các kết quả có thể của T là đồng khả năng, khi đó cho A là biến cố có liên quan đến phép thử có không gian mẫu
. Thì xác suất của biến cố A được tính bởi công thức
, trong đó
tương ứng là số phần tử của biến cố A và của không gian mẫu.
Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.
Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.
Theo công thức hoán vị vòng quanh ta có:
Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có
cách.
Vậy xác suất xảy ra là:.
Tìm xác suất của biến cố
Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.
Số phần tử của không gian mẫu là:
Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là:
Xác suất của biến cố A là:
Xác suất của biến cố A là:
Cho không gian mẫu Ω có n(Ω) = 10. Biến cố A có số các kết quả thuận lợi là n(A) = 5. Xác suất của biến cố A là:
Ta có: .
Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Từ một hộp chứa
quả cầu màu đỏ và
quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Số phần tử của không gian mẫu .
Gọi là biến cố "
quả cầu lấy được đều là màu xanh". Suy ra
.
Vậy xác suất cần tìm là .
Xác suất chọn được 2 nữ là:
Một tổ học sinh có
nam và
nữ. Chọn ngẫu nhiên
người. Xác suất chọn được 2 nữ là:
Chọn ngẫu nhiên người trong
người có
cách chọn.
Hai người được chọn đều là nữ có cách.
Xác suất để hai người được chọn đều là nữ là: .
Tính xác suất của biến cố
Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”
Vậy xác suất của biến cố A là:
Tính xác suất để mặt 4 chấm xuất hiện
Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất để mặt 4 chấm xuất hiện là:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”
Vậy xác suất của biến cố A là:
Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.
Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.
Gieo 2 con xúc sắc, số kết quả của không gian mẫu là: .
Các kết quả thỏa mãn yêu cầu đề bài là: (1; 2); (1; 5); (2; 1); (2; 4); (3; 3); (3; 6); (4; 2); (4; 5); (5; 1); (5; 4); (6; 3); (6; 6). Có 12 phần tử.
Xác suất là: .
Chọn đáp án đúng
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg)
Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:
Chọn ba quả cân có cách.
Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:
TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.
Ta có là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.
TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:
.
Trường hợp này ta có 6 cách chọn.
Vậy số cách chọn thỏa mãn yêu cầu bài toán là .
Xác suất cần tính là: .
Xác suất để được đúng một bi đỏ là bao nhiêu?
Một hộp chứa 3 bi xanh, 2 bi đỏ, 4 bi vàng. Lấy ngẫu nhiên 3 bi. Xác suất để được đúng một bi đỏ là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được đúng 1 bi đỏ.
Chọn 1 bi đỏ, 1 bi xanh, 1 bi vàng, có (cách).
Chọn 1 bi đỏ, 2 bi xanh, có (cách).
Chọn 1 bi đỏ,2 bi vàng, có (cách).
Suy ra .
Xác suất cần tìm là .
Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?
Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp
. Xác suất của
để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?
Có tất cả cách chọn 3 số tự nhiên từ tập hợp
.
Suy ra .
Xét biến cố “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.
Ta có “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.
Xét các trường hợp sau:
+ Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:
- Nếu 2 số liên tiếp là hoặc
thì số thứ ba có
cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).
- Nếu 2 số liên tiếp là ,
,.,
thì số thứ ba có
cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).
Trường hợp này có cách chọn.
+ Trường hợp 2: Chọn được 3 số liên tiếp.
Tức là chọn các bộ ,
,.,
: có tất cả 2017 cách.
Suy ra .
Vậy .
Chọn đáp án đúng
Xét một phép thử T và không gian mẫu là
. Giả sử C là một biến cố liên quan đến phép thử. Xác suất của biến cố C là:
Công thức đúng là: .
Xác suất để chọn ra học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Một lớp học có
học sinh trong đó có
cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra
học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra
học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên học sinh trong
học sinh.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
học sinh được chọn không có cặp anh em sinh đôi nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
học sinh được chọn luôn có
cặp anh em sinh đôi.
+ Chọn cặp em sinh đôi trong
cặp em sinh đôi, có
cách.
+ Chọn thêm học sinh trong 38 học sinh, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tính xác suất của biến cố thỏa mãn
Gọi
là tập hợp các số tự nhiên gồm
chữ số khác nhau. Chọn ngẫu nhiên một số từ
. Hãy tính xác suất để chọn được một số gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số
là số lẻ).
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được chọn gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ
. Do số
luôn đứng giữa
số lẻ nên số
không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng
+ Chọn trong
vị trí để xếp số
, có
cách.
+ Chọn trong
số lẻ và xếp vào
vị trí cạnh số
vừa xếp, có
cách.
+ Chọn số lẻ trong
số lẻ còn lại và chọn
số chẵn từ
sau đó xếp
số này vào
vị trí trống còn lại có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Mô tả không gian mẫu
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Tính xác suất để 4 bạn đều là nữ
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng:
Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: