Mô tả không gian mẫu
Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:
Mô tả không gian mẫu: .
Đề kiểm tra 45 phút Toán 10 Chương 9 Tính xác suất theo định nghĩa cổ điển sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Mô tả không gian mẫu
Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:
Mô tả không gian mẫu: .
Xác suất lấy được toàn màu đỏ là:
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất lấy được toàn màu đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Chọn đáp án đúng
Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”
Vậy xác suất của biến cố A là:
Tính xác suất để 2 quả cầu chọn ra cùng màu.
Một hộp chứa
quả cầu gồm
quả màu xanh và
quả cầu màu đỏ. Chọn ngẫu nhiên đồng thời
quả cầu từ hộp đó. Tính xác suất để
quả cầu chọn ra cùng màu.
Số cách lấy ra 2 quả cầu trong 11 quả là , Suy ra
.
Gọi A là biến cố lấy được 2 quả cùng màu. Suy ra .
Xác suất của biến cố A là .
Tính giá trị của k.
Một hộp đựng
thẻ được đánh số từ
đến
. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho
lớn hơn
. Tính giá trị của k.
Gọi biến cố : Lấy
tấm thẻ có ít nhất một tấm thẻ chia hết cho
. Với
.
Suy ra : Lấy
tấm thẻ không có tấm thẻ nào chia hết cho
.
Ta có:
.
Theo đề: .
Vậy là giá trị cần tìm.
Xác suất để 4 quân bài đều là Át
Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?
Số phần tử không gian mẫu:
Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:
Chọn mệnh đề đúng
Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là: .
Xác suất để thí sinh đó được 6 điểm là bao nhiêu?
Một đề thi trắc nghiệm gồm
câu, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng, mỗi câu trả lời đúng được
điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên
trong
phương án ở mỗi câu. Xác suất để thí sinh đó được
điểm là bao nhiêu?
Không gian mẫu của phép thử trên có số phần tử là .
Gọi là biến cố: “ Thí sinh đó được 6 điểm”
Tìm : Để được 6 điểm, thí sinh đó phải làm đúng 30 câu và làm sai 20 câu.
Công đoạn 1: Chọn 30 câu từ 50 câu để làm câu đúng. Có cách.
Công đoạn 2: Chọn phương án đúng của mỗi câu từ 30 câu đã chọn. Có cách.
Công đoạn 3: Chọn một phương án sai trong ba phương án sai của mỗi câu từ 20 còn lại. Có cách.
Theo quy tắc nhân, số kết quả thuận lợi cho biến cố là
.
Vậy xác suất để học sinh đó được 6 điểm là:.
Tính xác suất chọn được số chia hết cho 3
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Tính xác suất để chọn được số chia hết cho 3 là:
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên có 20 cách chọn
Gọi A là biến cố “chọn được số chia hết cho 3”
Vậy .
Tính số học sinh nữ của lớp
Một lớp học có 30 học sinh gồm có nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là
. Tính số học sinh nữ của lớp.
Gọi số học sinh nữ là . Suy ra số học sinh nam là
.
Chọn 3 học sinh từ 30 học sinh, không gian mẫu là: .
Gọi A là biến cố "Chọn được 2 nam và 1 nữ". Suy ra .
Theo đề bài: .
Vậy có 14 học sinh nữ.
Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển lý là .
Số cách lấy được 2 quyển lý, 1 quyển hóa là .
Số cách lấy được 1 quyển lý, 2 quyển hóa là .
Số cách lấy 3 quyển sách mà không có sách toán là .
Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.
Suy ra xác suất cần tìm là .
Tính xác suất của biến cố
Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.
Không gian mẫu
Số phần tử của không gian mẫu
Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.
Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: .
Tính xác suất để hai số đều chia hết cho 3
Cho tập hợp
. Gọi
là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập
. Chọn ngẫu nhiên hai số từ tập
, tính xác suất để hai số được chọn đều chia hết cho 3?
Gọi B là biến cố chọn được hai số đều chia hết cho 3
Số các số tự nhiên có 3 chữ số được lập thành từ tập M là:
Khi đó số phần tử của không gian mẫu là:
Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:
Mỗi tập trên tạo thành số chia hết cho 3 nên ta có:
số chia hết cho 3
Khi đó
Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là:
Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Từ một hộp chứa
quả cầu màu đỏ và
quả cầu màu xanh, lấy ngẫu nhiên đồng thời
quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Gọi là biến cố: “lấy được
quả cầu màu xanh”.
Ta có .
Tính xác suất để chọn được 3 bạn nam
Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?
Số cách chọn 3 học sinh từ 15 học sinh là:
Số cách chọn 3 học sinh nam từ 9 học sinh nam là:
Vậy xác suất để chọn được 3 học sinh nam là:
Mô tả biến cố A
Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.
Mô tả biến cố A: A = {1;2;3}.
Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Xác suất để lấy được 3 quả màu xanh
Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?
Lấy 3 quả bóng từ 12 quả ta có:
Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: cách
Vậy xác suất để lấy được 3 quả bóng màu xanh là: .
Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?
Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp. Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?
Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
2 viên bi được lấy vừa khác màu vừa khác số
.
● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi đỏ là cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).
● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi vàng là cách.
● Số cách lấy 2 viên bi gồm 1 bi đỏ và 1 bi vàng là cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Xác suất để chọn được 2 nam 1 nữ là:
Lớp
B có
đoàn viên, trong đó có
nam và
nữ. Chọn ngẫu nhiên
đoàn viên trong lớp để tham dự hội trại ngày
tháng
. Xác suất để chọn được 2 nam 1 nữ là:
Số phần tử của không gian mẫu .
Gọi là biến cố “
đoàn viên được chọn có
nam và
nữ”.
Số phần tử của là
.
Vậy xác xuất của biến cố là:
.
Tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Xác suất để mặt 6 chấm xuất hiện là:
Gieo một con súc sắc. Xác suất để mặt
chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Không gian mẫu có bao nhiêu phần tử?
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?
Mô tả không gian mẫu ta có: . (18 phần tử)
Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.
Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:
- Tâm 10 điểm: 0,5.
- Vòng 9 điểm: 0,25.
- Vòng 8 điểm: 0,1.
- Vòng 7 điểm: 0,1.
- Ngoài vòng 7 điểm: 0,05.
Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.
Ta có
Với bộ có 3 cách xáo trộn điểm các lần bắn
Với bộ có 6 cách xáo trộn điểm các lần bắn
Với bộ có 1 cách xáo trộn điểm các lần bắn.
Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:
.
Tìm biến cố chắc chắn
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Tính xác suất của biến cố A
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Xác suất để tích hai số chọn được là một số chẵn
Gọi
là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ
. Chọn ngẫu nhiên 2 số từ tập
. Xác suất để tích hai số chọn được là một số chẵn là:
Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.
Gọi là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho
Số cách chọn là 6 cách; Số cách chọn
cách
Số các số có hai chữ số khác nhau tạo được là
số. Suy ra
có
phần tử.
Số cách lấy ngẫu nhiên 2 số từ tập :
cách
Gọi biến cố : “Tích hai số được chọn là một số chẵn”
Gọi biến cố : “Tích hai số được chọn là một số lẻ”
Số các số lẻ trong :
(3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).
Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: cách
Suy ra . Vậy
.
Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ
Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.
Chọn 3 bạn bất kì từ 10 bạn, suy ra .
Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".
Trường hợp 1: 3 bạn nữ
Có: (cách)
Trường hợp 2: 2 bạn nữ + 1 bạn nam
Có: (cách)
Trường hợp 3: 1 bạn nữ + 2 bạn nam
Có: (cách)
Vậy .
Xác suất .
Tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.
Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp. Tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.
Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
5 viên bi được ó đủ màu và số bi đỏ bằng số bi vàng
. Ta có các trường hợp thuận lợi cho biến cố
là:
TH1: Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có cách.
TH2: Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tìm số phần tử của biến cố
Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.
Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
Tính xác suất của biến cố
Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?
Vì mỗi hành khách có 4 cách chọn toa tàu nên:
Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:
Chọn 1 toa để xếp 3 người ta có:
Chọn 3 người để xếp vào toa đó là:
Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào:
Theo quy tắc nhân ta có:
Vậy xác suất cần tìm là:
Tính số phần tử của biến cố A
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.
Một hộp đựng 8 quả cầu trắng, 12 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.
Không gian mẫu là lấy 2 quả cầu trong hộp một cách lần lượt ngẫu nhiên.
Suy ra số phần tử của không gian mẫu là .
Gọi biến cố
2 quả cầu được lấy cùng màu
. Ta có các trường hợp thuận lợi cho biến cố
như sau:
TH1: Lần thứ nhất lấy quả màu trắng và lần thứ hai cũng màu trắng.
Do đó trường hợp này có cách.
TH2: Lần thứ nhất lấy quả màu đen và lần thứ hai cũng màu đen.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.
Cho năm đoạn thẳng có độ dài:
,
,
,
,
. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.
* Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có cách.
Suy ra .
* Gọi là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".
Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:
(thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).
Do đó Vậy sác xuất cần tìm là
.
Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?
Số phần tử không gian mẫu:.
Biến cố xuất hiện mặt sấp ít nhất một lần: .
Suy ra .
Tính xác suất của biến cố
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng:
Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng:
Tính xác suất để chọn số bác sĩ bằng nhau
Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là:
Vậy xác suất của biến cố A cần tìm là:
Tính xác suất để cả 6 người là nam
Một homestay có 6 phòng đơn. Trên trang web của homestay có 6 nam và 4 nữ đặt phòng. Người chủ homestay chọn ngẫu nhiên 6 người cho nhận phòng. Tính xác suất để cả 6 người được chọn là nam?
Số phần tử không gian mẫu là:
Chọn ngẫu nhiên 6 người đều là nam ta có: cách chọn
Vậy xác suất để chọn 6 người đều là nam là: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: