Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa học kì 2 Toán 10 Kết nối tri thức (Đề 2)

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Cùng nhau ôn tập, thử sức với đề kiểm tra giữa học kì 2 Toán 10 - Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Tìm hệ số góc

    Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng

    Hệ số góc a = 2018.

  • Câu 2: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho hàm số y =
x^{2} - 2\left( m + \frac{1}{m} ight)x + m(m > 0) xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng

    Đặt y = f(x) = x^{2} - 2\left( m +
\frac{1}{m} ight)x + m.

    Hoành độ đỉnh của đồ thị hàm số là x = m +
\frac{1}{m} \geq 2 (bất đẳng thức Côsi).

    Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên \left( - \infty;m +
\frac{1}{m} ight).

    Suy ra, hàm số nghịch biến [ − 1; 1].

    \Rightarrow y_{1} = f( - 1) = 3m +
\frac{2}{m} + 1.

    y_{2} = f(1) = 1 - m -
\frac{2}{m}.

    Theo đề bài ta có: y1 − y2 = 8 \Leftrightarrow 3m + \frac{2}{m} + 1 - 1 + m
+ \frac{2}{m} = 8(m > 0) \Leftrightarrow m^{2} - 2m + 1 = 0
\Leftrightarrow m = 1.

  • Câu 3: Vận dụng

    Tìm hệ số góc của đường thẳng

    Đường thẳng \Delta tạo với đường thẳng d:x + 2y - 6 = 0 một góc 45^{0}. Tìm hệ số góc k của đường thẳng \Delta.

    d:x + 2y - 6 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1;2), gọi {\overrightarrow{n}}_{\Delta} = (a;b) ightarrow
k_{\Delta} = - \frac{a}{b}. Ta có:

    \frac{1}{\sqrt{2}} = cos45^{\circ} =
\frac{|a + 2b|}{\sqrt{a^{2} + b^{2}}.\sqrt{5}} \Leftrightarrow 5\left(
a^{2} + b^{2} ight) = 2a^{2} + 8ab + 8b^{2}

    \Leftrightarrow 3a^{2} - 8ab - 3b^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - \frac{1}{3}b ightarrow k_{\Delta} = \frac{1}{3} \\
a = 3b ightarrow k_{\Delta} = - 3 \\
\end{matrix} ight.\ .

  • Câu 4: Thông hiểu

    Tính tổng b + c

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 5: Thông hiểu

    Xác định tam thức bậc hai

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 6: Nhận biết

    Chọn khẳng định đúng

    Cho hai số tự nhiên k,x sao cho 0
\leq k \leq n. Chọn khẳng định đúng sau đây?

    Khẳng định đúng là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 7: Nhận biết

    Hỏi có bao nhiêu tập con

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

  • Câu 8: Nhận biết

    Chọn khẳng định đúng

    Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng(2;+∞).

  • Câu 9: Nhận biết

    Tam thức bậc hai dương khi và chỉ khi

    Tam thức bậc hai f(x) = x^{2} + \left( \sqrt{5} - 1 ight)x -
\sqrt{5} nhận giá trị dương khi và chỉ khi

    f(x) = x^{2} + \left( \sqrt{5} - 1
ight)x - \sqrt{5} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - \sqrt{5} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x \in
\left( - \infty; - \sqrt{5} ight) \cup (1; + \infty).

  • Câu 10: Vận dụng

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 thỏa mãn

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

  • Câu 11: Vận dụng

    Chọn khẳng định đúng

    Đồ thị hàm số y = x2 − 6|x| + 5:

    Ta có: y = x^{2} - 6|x| + 5 = \left\{
\begin{matrix}
y_{1} = x^{2} - 6x + 5\ \ \ khi\ x \geq 0\ \ \left( C_{1} ight) \\
y_{2} = x^{2} + 6x + 5\ \ \ khi\ x < 0\ \ \left( C_{2} ight) \\
\end{matrix} ight.

    Đồ thị  (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần

    Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung

    Phần đồ thị  (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung

    Ta có đồ thị  (C) như hình vẽ

    Vậy đồ thị  (C) có trục đối xứng có phương trình x = 0.

  • Câu 12: Thông hiểu

    Tìm số nghiệm của phương trình

    Cho phương trình \frac{x^{2} - 4x + 2}{\sqrt{x - 2}} = \sqrt{x -2}. Số nghiệm của phương trình này là:

    ĐKXĐ: x > 2 khi đó phương trình trở thành x^{2} - 4x + 2 = x - 2\Leftrightarrow x^{2} - 5x + 4 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight..

    Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.

  • Câu 13: Thông hiểu

    Tính góc tạo bởi hai đường thẳng

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 14: Vận dụng

    Tìm tập xác định

    Tập xác định của hàm số y = \sqrt{\frac{2x^{2} - 2(m + 1)x + m^{2} +
1}{m^{2}x^{2} - 2mx + m^{2} + 2}} là:

    ĐKXĐ: \left\{ \begin{matrix}
\frac{2x^{2} - 2(m + 1)x + m^{2} + 1}{m^{2}x^{2} - 2mx + m^{2} + 2} \geq
0 \\
m^{2}x^{2} - 2mx + m^{2} + 2 eq 0 \\
\end{matrix} ight.

    +) Xét tam thức bậc hai f(x) = 2x2 − 2(m+1)x + m2 + 1

    Ta có af = 2 > 0,  Δf′ = ... =  − (m−1)2 ≤ 0

    Suy ra với mọi m ta có f(x) = 2x2 − 2(m+1)x + m2 + 1 ≥ 0,  ∀x ∈ ℝ(1)

    +) Xét tam thức bậc hai g(x) = m2x2 − 2mx + m2 + 2

    Với m = 0 ta có g(x) = 2 > 0, xét với m ≠ 0 ta có:

    ag = m2 > 0,  Δg′ =  − m2(m2+1) < 0.

    Suy ra với mọi m ta có g(x) = m2x2 − 2mx + m2 + 2 > 0,  ∀x ∈ ℝ (2)

    Từ (1) và (2) suy ra với mọi m thì \frac{2x^{2} - 2(m + 1)x + m^{2} + 1}{m^{2}x^{2} -
2mx + m^{2} + 2} \geq 0m2x2 − 2mx + m2 + 2 ≠ 0 đúng với mọi giá trị của x.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 15: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):11x - 12y + 1 = 0\left( d_{2} ight):12x + 11y + 9 =
0. Khi đó vị trí tương đối của hai đường thẳng là:

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):11x - 12y + 1 = 0 là: \overrightarrow{n_{d_{1}}} = (11; -
12)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):12x + 11y + 9 = 0 là: \overrightarrow{n_{d_{2}}} = (12;11)

    Ta thấy \overrightarrow{n_{d}}.\overrightarrow{n_{d}} =
0

    Suy ra hai đường thẳng vuông góc với nhau.

  • Câu 16: Nhận biết

    Viết phương trình tham số của d

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 17: Vận dụng

    Tìm các giá trị tham số m thỏa mãn yêu cầu

    Tìm tất cả các giá trị của tham số m để phương trình \sqrt{2x + m} = x - 1\ \
(*) có hai nghiệm phân biệt lớn hơn 1?

    Phương trình

    \sqrt{2x + m} = x - 1

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 \geq 0 \\
2x + m = (x - 1)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 4x + 1 - m = 0\ (**) \\
\end{matrix} ight.

    Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 \Leftrightarrow (**) có hai nghiệm phân biệt lớn hơn 1.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
1 < x_{1} < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
0 < x_{1} - 1 < x_{2} - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3 + m > 0 \\
\left( x_{1} - 1 ight).\left( x_{2} - 1 ight) > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
x_{1}x_{2} - \left( x_{1} + x_{2} ight) + 1 > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
1 - m - 4 + 1 > 0 \\
4 > 2 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < 2

  • Câu 18: Nhận biết

    Chọn khẳng định đúng

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 19: Thông hiểu

    Tìm hàm số đồng biến trên khoảng cho trước

    Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ( - 1;1)?

    Hàm số y = x là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số y =
x đồng biến trên tập số thực.

    Vậy hàm số y = x đồng biến trên khoảng ( - 1;1).

  • Câu 20: Thông hiểu

    Định m để hai đường thẳng cắt nhau

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 21: Nhận biết

    Tìm giá trị nhỏ nhất

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 22: Thông hiểu

    Viết phương trình tổng quát của ∆

    Nếu đường thẳng (\Delta) đi qua gốc tọa độ và song song với đường thẳng (d):4x - 3y + 5 = 0 thì (\Delta) có phương trình tổng quát là:

    Một vectơ pháp tuyến của (\Delta) là: \overrightarrow{n}(4; - 3)

    Mặt khác (\Delta) đi qua gốc tọa độ hay đi qua điểm O(0;0)

    Vậy phương trình đường thẳng (\Delta) là:

    4(x - 0) - 3(y - 0) = 0

    \Leftrightarrow 4x - 3y = 0

    Vậy đáp án đúng là: 4x - 3y = 0.

  • Câu 23: Nhận biết

    Tìm nghiệm của phương trình

    Nghiệm của phương trình \sqrt{-10x+10}=x-1 là:

     Ta có: \sqrt{-10x+10}=x-1 \Rightarrow -10x+10=x^2-2x+1\Leftrightarrow x^2+8x-9=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 9}\end{array}} ight..

    Thử lại thấy x=9 không thỏa mãn. Do đó x=1.

  • Câu 24: Nhận biết

    Tìm điểm không thuộc đường thẳng

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 25: Thông hiểu

    Tìm tập xác định

    Tập hợp nào sau đây là tập xác định của hàm số y = \sqrt{1 + 5x} + \frac{|x|}{\sqrt{7 -
2x}}?

    Hàm số xác đinh khi và chỉ khi \left\{
\begin{matrix}
1 + 5x \geq 0 \\
7 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - \frac{1}{5} \\
x < \frac{7}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{5} \leq x <
\frac{7}{2}.

  • Câu 26: Nhận biết

    Giải bất phương trình

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 27: Thông hiểu

    Tính m + n

    Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C_{m}^{2}=153 và C_{m}^{n}=C_{m}^{n+2}. Khi đó m + n bằng

    Điều kiện: m,n \in \mathbb{N},m \geqslant 2,0 \leqslant n < m

    Ta có: C_m^n = C_m^{m - n}  

    \begin{matrix}  C_m^n = C_m^{n + 2} \hfill \\   \Leftrightarrow C_m^{m - n} = C_m^{n + 2} \hfill \\   \Rightarrow m - n = n + 2 \hfill \\   \Rightarrow n = \dfrac{{m - 2}}{2} \hfill \\ \end{matrix}

    Mặt khác ta có:

     \begin{matrix}  C_m^2 = 153 \hfill \\   \Leftrightarrow \dfrac{{m\left( {m - 1} ight)\left( {m - 2} ight)!}}{{2!\left( {m - 2} ight)!}} = 153 \hfill \\   \Leftrightarrow m\left( {m - 1} ight) = 306 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 18\left( {tm} ight)} \\   {m =  - 17\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => n=8

    vậy tổng m và n là: 18 + 8 = 26.

     

  • Câu 28: Nhận biết

    Hỏi có bao nhiêu cách sắp xếp

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

  • Câu 29: Nhận biết

    Tính d(C, ∆)

    Tính khoảng cách từ điểm C( - 1;2) đến đường thẳng (\Delta):4x - 3y + 5 = 0

    Khoảng cách từ điểm C đến đường thẳng (\Delta):4x - 3y + 5 = 0 là:

    d(C;\Delta) = \frac{\left| 4.( - 1) -
3.2 + 5 ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 30: Thông hiểu

    Tìm m để hai đường thẳng vuông góc

    Tìm m để đường thẳng \left( d_{1} ight):x - my + 5 = 0\left( d_{2} ight): - 3x + y - 1 =
0 tạo với nhau một góc 90^{0}?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):x - my + 5 = 0 là: \overrightarrow{n_{1}} = (1; - m)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight): - 3x + y - 1 = 0 là: \overrightarrow{n_{2}} = ( - 3;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow - 3 - m = 0

    \Leftrightarrow m = - 3

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 3.

  • Câu 31: Vận dụng

    Chọn khẳng định đúng

    Trong mặt phẳng với hệ tọa độ Oxy, có tất cả bao nhiêu đường thẳng đi qua điểm M(2\ ;\ 0) đồng thời tạo với trục hoành một góc 45{^\circ}?

    Cho đường thẳng d và một điểm M. Khi đó.

    (i) Có duy nhất một đường thẳng đi qua M song song hoặc trùng hoặc vuông góc với d.

    (ii) Có đúng hai đường thẳng đi qua M và tạo với d một góc 0^{\circ} < \alpha <
90^{\circ}.

    Chọn phương án 2.

  • Câu 32: Thông hiểu

    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm m để {x^2} - 2(2m - 3)x + 4m - 3 > 0 với mọi x ∈ ℝ?

     Để bất phương trình {x^2} - 2(2m - 3)x + 4m - 3 > 0 với mọi x ∈ ℝ thì:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{{\left( {2m - 3} ight)}^2} - \left( {4m - 3} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow 4{m^2} - 12m + 9 - 4m + 3 < 0 \hfill \\   \Leftrightarrow 4{m^2} - 16m + 12 < 0 \hfill \\   \Leftrightarrow m \in \left( {1,3} ight) \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Tính số các số tự nhiên được tạo thành

    Từ tập hợp các chữ số 1,2,8,6,7,5 có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?

    Gọi số tự nhiên có hai chữ số \overline{ab};(a eq 0)

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Vậy số các số tự nhiên có thể tạo thành từ tập hợp các chữ số đã cho là 6.5 = 30 số.

  • Câu 34: Thông hiểu

    Xác định vectơ pháp tuyến của đường thẳng

    Cho hai điểm P(5;4),Q(1;2). Vectơ pháp tuyến của đường thẳng PQ là:

    Một vectơ chỉ phương của PQ là: \overrightarrow{PQ} = ( - 4; - 2) = -
2(2;1)

    Vậy vectơ pháp tuyến của PQ là: \overrightarrow{n}( - 1;2).

  • Câu 35: Nhận biết

    Tính số cách chọn quyển sách

    Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?

    Số cách chọn sách Toán là 20 cách.

    Số cách chọn sách Vật lí là 40 cách.

    Số cách chọn sách Hóa học là 50 cách.

    Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.

  • Câu 36: Nhận biết

    Xác định vectơ chỉ phương của đường thẳng

    Cho đường thẳng \Delta có phương trình 4x + 5y - 8 = 0. Xác định vectơ chỉ phương của \Delta?

    Đường thẳng \Delta:4x + 5y - 8 =
0 có vectơ pháp tuyến là \overrightarrow{n} = (4;5) nên có vectơ chỉ phương là \overrightarrow{u} = (5; -
4).

  • Câu 37: Vận dụng cao

    Viết phương trình đường thẳng chứa BC

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình chứa các cạnh AB;AC lần lượt là x - y - 2 = 0x + 2y - 5 = 0. Xác định phương trình đường thẳng chứa cạnh BC, biết tọa độ trọng tâm tam giác ABC là điểm G(3;2)?

    Tọa độ đỉnh A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.

    \Rightarrow A(3;1)

    Gọi tọa độ điểm \left\{ \begin{matrix}
B(b;b - 2) \in AB \\
C(5 - 2c;c) \in AC \\
\end{matrix} ight.

    Vì tam giác ABC có trọng tâm G nên \left\{ \begin{matrix}
3 + b + 5 - 2c = 9 \\
1 + b - 2 + c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = 5 \\
c = 2 \\
\end{matrix} ight.

    \Rightarrow B(5;3),C(1;2)

    Một vectơ chỉ phương của đường thẳng BC là \overrightarrow{u} = \overrightarrow{BC} = ( - 4;
- 1)

    Phương trình đường thẳng BC là: x - 4y +
7 = 0

  • Câu 38: Thông hiểu

    Chọn đáp án chưa chính xác

    Trong hệ trục tọa độ Oxy cho hai điểm A(3; - 1),B( - 6;2). Chọn đáp án không phải là phương trình tham số của đường thẳng AB.

    Đường thẳng AB có một vectơ chỉ phương là \overrightarrow{AB} = ( - 9;3) suy ra vectơ chỉ phương \overrightarrow{u} = ( -
3;1)

    Phương trình \left\{ \begin{matrix}
x = 3 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) không thỏa mãn vì có vectơ chỉ phương \overrightarrow{v} = (3;1) không cùng phương với \overrightarrow{u} = ( -
3;1).

  • Câu 39: Thông hiểu

    Tính số cách chọn hai viên bi

    Trong một hộp chứa 5 viên bi màu trắng đánh số từ 1 đến 5, 7 viên bi xanh đánh số từ 1 đến 7 và 9 viên bi vàng đánh số từ 1 đến 9. Chọn ngẫu nhiên hai viên bi. Số cách chọn được hai viên bi khác màu là:

    Chọn được 1 viên bi trắng + 1 viên bi xanh ta có: 5.7 = 35 cách chọn.

    Chọn được 1 viên bi trắng + 1 viên bi vàng ta có: 5.9 = 45 cách chọn.

    Chọn được 1 viên bi xanh + 1 viên bi vàng ta có: 7.9 = 63 cách chọn.

    Vậy số cách chọn được hai viên bi khác màu là 35 + 45 + 63 = 143 cách chọn.

  • Câu 40: Thông hiểu

    Tìm tập nghiệm của bất phương trình

    Giải bất phương trình \frac{{5{x^2} + 3x - 8}}{{{x^2} - 7x + 6}} \leqslant 0

    Ta có bảng xét dấu như sau:

    Tìm tập nghiệm của bất phương trình

    Vậy tập nghiệm của bất phương trình là: S = \left[ {\frac{{ - 8}}{5};1} ight) \cup \left( {1;6} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Kết nối tri thức (Đề 2) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo