Tính giá trị giới hạn
Tính giá trị giới hạn ![]()
Ta có:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 3: Giới hạn. Hàm số liên tục. Cấp số nhân nha!
Tính giá trị giới hạn
Tính giá trị giới hạn ![]()
Ta có:
Xác định hàm số không liên tục
Hàm số nào trong các hàm số dưới đây không liên tục trên
?
Hàm số có tập xác định
nên hàm số không liên tục trên
.
Xác định sự đúng sai của các kết luận
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Chọn giá trị đúng của giới hạn?
Cho dãy số
với
và
. Chọn giá trị đúng của
trong các số sau:
Áp dụng phương pháp quy nạp toán học ta có
Nên ta có :
Suy ra : , mà
Vậy .
Tính giới hạn dãy số
Xác định giới hạn của dãy số
là:
Ta có:
Tìm tất cả các giá trị nguyên của tham số a
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Ghi đáp án vào ô trống
Cho hàm số
. Tìm
để hàm số liên tục tại ![]()
Đáp án: -3||- 3
Cho hàm số
. Tìm
để hàm số liên tục tại ![]()
Đáp án: -3||- 3
Xét
Hàm số liên tục tại
.
Tính giới hạn
Tính giới hạn ![]()
Ta có:
Tính giới hạn
bằng
Ta có:
Chọn phương trình thỏa mãn điều kiện
Phương trình nào dưới đây có nghiệm trong khoảng (0; 1)?
Xét hàm số liên tục trên
.
=> Phương trình có ít nhất một nghiệm thuộc khoảng .
Giới hạn hàm số
Cho hàm số
. Khi đó
bằng:
Ta có:
Chọn đáp án đúng
Tính
được kết quả là:
Ta có
.
Tính giá trị?
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Chọn đáp án đúng
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Tính giá trị biểu thức F
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Giới hạn nào không tồn tại
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Giá trị của m để hàm số đã cho liên tục
Cho hàm số
. Giá trị của m để hàm số đã cho liên tục tại
là:
Ta có:
Để hàm số liên tục tại thì
Ghi đáp án vào ô trống
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Ta có
.
Suy ra .
Tính giới hạn
bằng
Ta có:
Xác định sự đúng sai của các kết luận
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: