Tìm giới hạn
Tính giới hạn ![]()
Ta có:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 3: Giới hạn. Hàm số liên tục. Cấp số nhân nha!
Tìm giới hạn
Tính giới hạn ![]()
Ta có:
Chọn phương trình thỏa mãn điều kiện
Phương trình nào dưới đây có nghiệm trong khoảng (0; 1)?
Xét hàm số liên tục trên
.
=> Phương trình có ít nhất một nghiệm thuộc khoảng .
Tính lim?
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Tìm giá trị của tham số a
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả
Ghi đáp án vào ô trống
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Phần giải chi tiết
Tập xác định .
Hàm số liên tục trên các khoảng
.
Ta có
Hàm số liên tục trên
khi và chỉ khi
.
Tìm giới hạn của dãy số?
Cho dãy số
với
. Chọn kết quả đúng của
là:
Ta có:
= 0
Tính giới hạn hàm số
Tính
.
Ta có:
Tính giới hạn?
Tính giới hạn: ![]()
Ta có:
Tính giá trị biểu thức Q
Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
Xác định mệnh đề sai
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Tìm tập hợp chứa giá trị a
Biết
. Hỏi giá trị a thuộc tập hợp nào dưới đây?
Ta có:
Tính giá trị của M.n
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:

Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Tính giới hạn
Tính giới hạn ![]()
Ta có:
Tính giới hạn hàm số
Tính giới hạn ![]()
Ta có:
Xác định số nghiệm của phương trình
Cho hàm số
. Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Tính giới hạn
bằng:
Ta có:
Tính giá trị giới hạn
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Tính giới hạn của hàm số
bằng:
Ta có:
Xác định mệnh đề đúng
Cho phương trình
. Mệnh đề nào sau đây đúng?
Xét hàm số là đa thực có tập xác định
nên liên tục trên
.
Ta có:
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
Vậy phương trình (*) đã cho có các nghiệm thỏa mãn
.
Tìm khoảng liên tục của hàm số
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: