Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 9 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 9: Xác suất nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính số trận đấu

    Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?

    Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).

    Như vậy, ta có C_{15}^2 = \frac{{15!}}{{13!.2!}} = 105 trận đấu.

  • Câu 2: Thông hiểu

    Tính xác suất của biến cố A

    Thực hiện gieo hai lần một con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện ít nhất một lần mặt năm chấm. Tính xác suất của biến cố A?

    Ta có: n(\Omega) = 6.6 = 36 và A là biến cố xuất hiện ít nhất một lần mặt năm chấm

    Suy ra \overline{A} là biến cố không lần nào xuất hiện mặt năm chấm.

    Ta có: n\left( \overline{A} ight) = 5.5
= 25 \Rightarrow P\left( \overline{A} ight) =
\frac{25}{36}

    \Rightarrow P(A) = 1 - \frac{25}{36} =
\frac{11}{36}

  • Câu 3: Thông hiểu

    Chọn đáp án đúng

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 4: Vận dụng

    Tính xác suất của biến cố D

    Cho A,B,C,D là các biến cố đôi một xung khắc và A \cup B \cup C \cup D là biến cố chắc chắn. Biết P(A) = 3P(B);P(B) =
3P(C);P(C) = 3P(D). Tính xác suất của biến cố D?

    Gọi P(D) = x theo giả thiết ta có: \left\{ \begin{matrix}
P(C) = 3x \\
P(B) = 9x \\
P(A) = 27x \\
\end{matrix} ight.

    A \cup B \cup C \cup D là biến cố chắc chắn nên P(A \cup B \cup C \cup
D) = 1

    Mặt khác A,B,C,D là các biến cố đôi một xung khắc nên

    P(A \cup B \cup C \cup D) = P(A) + P(B)
+ P(C) + P(D)

    \Leftrightarrow P(A) + P(B) + P(C) +
P(D) = 1

    \Leftrightarrow 27x + 9x + 3x + x = 1
\Leftrightarrow x = \frac{1}{40}

    \Rightarrow P(D) =
\frac{1}{40}

  • Câu 5: Vận dụng

    Tính xác suất để chọn được số x > 2020

    Cho các chữ số 0;1;2;3;4;5;6;7. Giả sử tập hợp M là tập hợp các số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số đã cho. Lấy ngẫu nhiên một số x \in M. Xác suất để chọn được x > 2020?

    Gọi số phần tử của tập hợp M là n(M) =
7.A_{7}^{3} = 1470

    Số phần tử của không gian mẫu là: n(\Omega) = C_{1470}^{1} = 1470

    Gọi A là biến cố chọn được số lớn hơn 2020.

    Giả sử số tự nhiên có 4 chữ số là x =
\overline{abcd} \in M ta có: x >
2020 nên ta có các trường hợp sau:

    TH1: a = 2;b = 0 \Rightarrow c \in
\left\{ 3;4;5;6;7 ight\} nên c có 5 cách chọn và d có 5 cách chọn.

    Do đó trường hợp này có: 1.1.5.5 =
25 số.

    TH2: a = 2;b \in \left\{ 1;3;4;5;6;7
ight\} thì \overline{cd}A_{6}^{2} cách chọn và sắp xếp.

    Do đó trường hợp này có 1.6.A_{6}^{2} =
180 số.

    TH3: a \in \left\{ 3;4;5;6;7
ight\} thì \overline{bcd}A_{7}^{3} cách chọn và sắp xếp.

    Do đó trường hợp này có 5.A_{7}^{3} =
1050 số.

    Vậy xác suất cần tính là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1255}{1470} =
\frac{251}{294}.

  • Câu 6: Thông hiểu

    Biểu diễn biến cố theo yêu cầu bài toán

    Giáo viên trong lớp chuẩn bị 3 chiếc hộp:

    Hộp 1 chứa 3 quả cầu đỏ và 5 quả cầu trắng.

    Hộp 2 chứa 2 quả cầu đỏ và 2 quả cầu vàng.

    Hộp 3 chứa 2 quả cầu đỏ và 3 quả cầu xanh.

    Lấy ngẫu nhiên một hộp rồi lấy một quả cầu trong hộp đó. Gọi X_{1} là biến cố lấy được hộp 1, X_{2} là biến cố lấy được hộp 2, X_{3} là biến cố lấy được hộp 3. Khi đó biến cố lấy ngẫu nhiên một hộp rồi lấy được một quả màu đỏ trong hộp đó biểu diễn như thế nào?

    Lấy ngẫu nhiên một hộp trong hộp đó lấy ngẫu nhiên 1 quả cầu được quả màu đỏ thì hoặc là lấy được quả đỏ từ hộp 1 hoặc là lấy được quả đỏ từ hộp 2 hoặc lấy được quả đỏ từ hộp 3. Do đó ta biểu diễn biến cố cần tìm như sau:

    \left( X \cap X_{1} ight) \cup \left(
X \cap X_{2} ight) \cup \left( X \cap X_{3} ight)

  • Câu 7: Nhận biết

    Tính xác suất thực nghiệm mặt ngửa

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 8: Nhận biết

    Chọn kết quả chính xác

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 9: Thông hiểu

    Xác định số phần tử của biến cố

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

  • Câu 10: Vận dụng cao

    Tính xác suất của biến cố

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 11: Vận dụng

    Tính xác suất của biến cố

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 12: Nhận biết

    Xác định số phần tử không gian mẫu

    Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử C là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố C?

    Các phần tử của biến cố là:

    C = \left\{
(1,2,3);(1,2,4);(1,2,5);(1,3,4) ight\}

    Vậy n(\Omega) = 4

  • Câu 13: Thông hiểu

    Xác suất để được lá bích

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 14: Vận dụng cao

    Tính số tam giác tù được tạo thành

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 15: Thông hiểu

    Tính xác suất của các biến cố

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".

    Các kết quả thuận lợi cho biến cố B là

    (1;1;2) và 2 hoán vị của nó,

    (1;1;3) và 2 hoán vị của nó,

    (2;2;1) và 2 hoán vị của nó,

    (2;2;3) và hai hoán vị của nó,

    (3;3;1) và 2 hoán vị của nó,

    (3;3;2) và 2 hoán vị của nó.

    Khi đó các kết quả thuận lợi cho biến cố B là: 3.6 = 18

    Vậy xác suất của biến cố này là P(B) =
\frac{18}{27} = \frac{2}{3}

  • Câu 16: Vận dụng

    Tính số cạnh của đa giác

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 17: Thông hiểu

    Chọn đáp án chính xác

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 18: Thông hiểu

    Chọn khẳng định sai

    Cho hai tập hợp A = {a, b, c, d}; B = {c, d, e}. Chọn khẳng định sai trong các khẳng định
    sau:

    N(A) = 4 => Khẳng định đúng

    N(B) = 3 => Khẳng định đúng

    A ∩ B = {c, d} => N(A ∩ B) = 2 là khẳng định đúng

    A ∪ B = {a, b, c, e} => N(A ∪ B) = 4 => Khẳng định sai là N(A ∪ B) = 7

  • Câu 19: Nhận biết

    Tính số các số lẻ được tạo thành

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?

     Gọi số tự nhiên có 5 chữ số khác nhau là: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Do số tạo thành là số lẻ => e = {1; 7; 9}

    => Số cách chọn e là: 3 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số có 5 chữ số khác nhau được tạo thành là: 3 . 4 . 4 . 3 . 2 = 288 số

  • Câu 20: Nhận biết

    Tính xác suất của biến cố

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 21: Thông hiểu

    Chọn đáp án đúng

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có ít nhất một nữ.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn có ít nhất một nữ"

    => {\overline A } là biến cố "2 người được chọn không có nữ"

    => n\left( {\overline A } ight) = C_7^2 = 21

    => Xác suất sao cho 2 người được chọn không có nữ là:

    P\left( {\overline A } ight) = \frac{{n\left( {\overline A } ight)}}{{n\left( \Omega  ight)}} = \frac{{21}}{{45}} = \frac{7}{{15}}

    => Xác suất sao cho 2 người được chọn có ít nhất một nữ:

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{7}{{15}} = \frac{8}{{15}}

  • Câu 22: Thông hiểu

    Số cách chia 10 học sinh thành 3 nhóm

    Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:

    Chọn nhóm có 2 thành viên: C_{10}^2

    Chọn nhóm có 3 thành viên từ 8 thành viên còn lại: C_8^3

    Chọn nhóm có 5 thành viên từ 5 thành viên còn lại: C_5^5

    => Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: C_{10}^2.C_8^3.C_5^5

  • Câu 23: Nhận biết

    Tính xác suất để cả 2 học sinh đều không đạt yêu cầu

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 24: Thông hiểu

    Điền đáp án vào ô trống

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    TH1: A thuộc bài, B không thuộc bài, C thuộc bài có xác suất là:

    P_{1} = 0,9.(1 - 0,7).0,8 =
0,216

    TH2: A không thuộc bài, B thuộc bài, C thuộc bài có xác suất là:

    P_{2} = (1 - 0,9).0,7.0,8 =
0,056

    TH2: A thuộc bài, B thuộc bài, C không thuộc bài có xác suất là:

    P_{3} = 0,9.0,7.(1 - 0,8) =
0,126

    Vậy xác suất cần tìm là: P = 0,216 +
0,056 + 0,126 = 0,398

  • Câu 25: Thông hiểu

    Ghi đáp án vào ô trống

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Ta có: 1605632 =
2^{15}.7^{2}

    Suy ra số các ước nguyên dương của 1605632 là (15 + 1)(2 + 1) = 48.

    Số phần tử của không gian mẫu: n(\Omega)
= 48.

    Trong đó, số các số chia hết cho 7 là: (15 + 1).2 = 32.

    Xác xuất cần tìm là: P = \frac{32}{48} =
\frac{2}{3}.

  • Câu 26: Nhận biết

    Tính số trận đấu

    Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:

    Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:2.C_{10}^2 = 90

  • Câu 27: Vận dụng

    Tính số kết quả thuận lợi của biến cố M

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 28: Nhận biết

    Số các số có 4 chữ số được tạo thành

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a: 4 cách

    Số cách chọn b: 3 cách

    Số cách chọn c: 2 cách

    Số cách chọn d: 1 cách

    => Số các số có 4 chữ số khác nhau được tạo thành là  4! = 24  cách

  • Câu 29: Thông hiểu

    Tính xác suất của biến cố

    Rút đồng thời ngẫu nhiên 2 thẻ từ hộp có 9 thẻ được đánh số từ 1 đến 9. Tính xác suất để tích các số ghi trên thẻ rút được là số chẵn?

    Ta có: 4 thẻ ghi số chẵn là {2; 4; 6; 8} và 5 thẻ ghi số lẻ là {1; 3; 5; 7; 9}

    Rút ngẫu nhiên 2 thẻ từ 9 thẻ thì ta có số cách là C_{9}^{2}

    Số phần tử của không gian mẫu là n(\Omega) = C_{9}^{2} = 36

    Gọi A là biến cố tích các số trên thẻ rút được là số chẵn

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2} + C_{4}^{1}.C_{5}^{1} = 26

    \Rightarrow P(A) = \frac{26}{36} =
\frac{13}{18}

  • Câu 30: Nhận biết

    Tìm mối quan hệ giữa hai biến cố

    Hai người đi săn cùng bắn vào một con mồi. Gọi A là biến cố người thứ nhất bắn trúng con mồi. B là biến cố người thứ hai bắn trúng con mồi. Mối quan hệ giữa hai biến cố A và B là:

    Hai biến cố A và B là hai biến cố độc lập vì việc người thứ nhất bắn trúng con mồi không phụ thuộc vào người thứ hai bắn trúng con mồi.

  • Câu 31: Vận dụng

    Điền đáp án vào ô trống

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đáp án là:

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đánh số thứ tự các nhóm là A, B, C, D

    Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.

    Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.

    Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có C_{5}^{2} cách, xếp 3 học sinh khá còn lại có 3! cách.

    Bước 3: xếp 7 học sinh trung bình

    + Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.

    + Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.

    Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có C_{6}^{2}.3 cách.

    Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có C_{4}^{2}.2 cách.

    Xếp 2 học sinh trung bình còn lại có 1 cách.

    Do đó số cách sắp xếp là: 4!.4.C_{5}^{2}.3!.7.C_{6}^{2}.3.C_{4}^{2}..1 =21772800

    Vậy n(N) = 21772800

  • Câu 32: Vận dụng

    Chọn đáp án đúng

    Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?

    Quy ước gene A: lông đen và gene a: lông trắng

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1

    Trong đàn vịt mới xác suất để được một con lông đen là \frac{3}{4} và con lông trắng là \frac{1}{4}

    Gọi A là biến cố có đúng 1 con lông đen trong 2 con được chọn

    \Rightarrow P(A) =
\frac{3}{4}.\frac{1}{4} = \frac{3}{16}

    Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn

    \Rightarrow P(B) =
\frac{3}{4}.\frac{3}{4} = \frac{9}{16}

    Khi đó A \cup B là biến cố có ít nhất 1 con lông đen trong 2 con được chọn

    Do A và B là hai biến cố xung khắc nên

    P(A \cup B) = P(A) + P(B) = \frac{3}{16}
+ \frac{9}{16} = \frac{3}{4}

  • Câu 33: Nhận biết

    Xác suất để mặt chấm chẵn xuất hiện

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 34: Thông hiểu

    Chọn kết luận đúng

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 35: Vận dụng

    Tính các số tự nhiên lẻ được tạo thành

    Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số 0;1;2;3;4;5;6;7 mà chữ số đứng ở vị trí thứ ba luôn chia hết cho 6?

    Gọi số cần tìm có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}}

    Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.

    Suy ra \left\{ \begin{matrix}
a_{6} \in \left\{ 1;3;5;7 ight\} \\
a_{3} \in \left\{ 0;6 ight\} \\
\end{matrix} ight.

    TH1: Với a_{3} = 0 chữ số a_{6} có 4 cách chọn, a_{1} có 6 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.6.A_{6}^{3} số.

    TH2: Với a_{3} = 6 chữ số a_{6} có 4 cách chọn, a_{1} có 5 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.5.A_{6}^{3} số.

    Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: 4.6.A_{6}^{3} + 4.5.A_{6}^{3} = 2640.

  • Câu 36: Thông hiểu

    Tìm số phần tử không gian mẫu

    Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?

    Ta chia thành các trường hợp như sau:

    TH1: Nếu số 234 đứng đầu thì có A_{7}^{2} số

    TH2: Nếu cố 432 đứng đầu thì có A_{7}^{2} số

    TH3: Nếu cố 234; 432 không đứng đầu

    Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có C_{6}^{1} cách chọn số còn lại. Do đó trường hợp này có 6.2.2.C_{6}^{1} =144

    Suy ra số phần tử của tập hợp S là 2.A_{7}^{2} + 144 = 228

    Vậy số phần tử không gian mẫu là n(\Omega) = C_{228}^{2} = 25878

  • Câu 37: Nhận biết

    Tính xác suất để tổng số chấm thỏa mãn yêu cầu

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 38: Thông hiểu

    Tính xác suất để có 5 tấm thẻ thỏa mãn yêu cầu

    Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.

    Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".

    Tìm |\Omega|

    Chọn 10 tấm thẻ trong 30 tấm thẻ: có C_{30}^{10} cách chọn \Rightarrow |\Omega| = C_{30}^{10}

    Tìm \left| \Omega_{A}
ight|

    Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có C_{15}^{5} cách chọn.

    Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.

    Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có C_{12}^{4} cách chọn.

    Vậy số kết quả thuận lợi cho biến cố A là \left| \Omega_{A} ight| =
3.C_{15}^{5}C_{12}^{4}

    Vậy xác suất cần tìm là: P(A) =
\frac{3.C_{15}^{5}C_{12}^{4}}{C_{30}^{10}} = \frac{99}{667}

  • Câu 39: Nhận biết

    Tính số điện thoại tối đa có ở huyện Củ Chi

    Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

    Số điện thoại cần tìm có dạng \overline {790abcd}

    Số cách chọn a có 10 cách

    Số cách chọn b có 10 cách

    Số cách chọn c có 10 cách

    Số cách chọn d có 10 cách 

    => Có tối đa số điện thoại là: 10.10.10.10 = 104 = 10 000 số

  • Câu 40: Thông hiểu

    Số tam giác tạo thành

    Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

    Cứ 3 đỉnh của đa giác sẽ tạo thành một tam giác

    Số cách chọn 3 trong 10 đỉnh của đa giác là: C_{10}^3 = 120

    Vậy số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là: 120 tam giác

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 9 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo