Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 9 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 9: Xác suất nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm đáp án chính xác

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}

    Trướng hợp 1: e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

    Trường hợp 2: e = 0 => Có 1 cách chọn e

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 6 . 5 . 4 . 3 = 360 số

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 900 + 360 = 1260 số

  • Câu 2: Nhận biết

    Tính xác suất của biến cố

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 3: Nhận biết

    Tính số phần tử không gian mẫu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

  • Câu 4: Vận dụng

    Tính xác suất để lấy được một viên bi đỏ

    Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.

    Gọi A là biến cố chọn được hộp A

    B là biến cố chọn được hộp B

    C là biến cố chọn được hộp C

    E là biến cố bi chọn ra là bi màu đỏ.

    Ta có:\left\{ \begin{matrix}P(A) = P(B) = P(C) = \dfrac{1}{3} \\P\left( E|A ight) = \dfrac{4}{7} \\P\left( E|B ight) = \dfrac{3}{5} \\P\left( E|C ight) = \dfrac{1}{2} \\\end{matrix} ight.

    Theo công thức

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    = \frac{1}{3}.\frac{4}{7} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{1}{2} =
\frac{39}{70}

  • Câu 5: Nhận biết

    Số cách chọn ban chấp hành

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 6: Nhận biết

    Tính xác suất thực nghiệm mặt ngửa

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 7: Thông hiểu

    Tính xác suất để mỗi nhóm có một nữ

    Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?

    Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".

    Tìm |\Omega|

    Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có C_{9}^{3} cách.

    Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có C_{6}^{3} cách.

    Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.

    Vậy số phần tử của không gian mẫu là |\Omega| = C_{9}^{3}.C_{6}^{3}.1 =
1680

    Tìm \left| \Omega_{A}
ight|

    Phân 3 nữ vào ba nhóm có P_{3} = 3! =
6 cách khác nhau.

    Phân 6 nam vào ba nhóm theo cách trên có C_{6}^{2}.C_{4}^{2}.1 khác nhau

    Vậy số kết quả thuận lợi cho biến cố A là: \left| \Omega_{A} ight| =
6.C_{6}^{2}.C_{4}^{2}.1 = 540

    Vậy xác suất cần tìm là: P(A) =
\frac{540}{1680} = \frac{9}{26} \approx 0,32

  • Câu 8: Thông hiểu

    Điền đáp án vào ô trống

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5

    Xác suất không tham gia trong mỗi ngày là 0,5

    Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.

    Ta có: P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} +
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 9: Vận dụng

    Tính số đường chéo của đa giác

    Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

    Đa giác đều có 12 cạnh tương ứng với 12 đỉnh

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{12}^2 = 66 đoạn thẳng

    Mà số cạnh của đa giác là 12 cạnh

    => Số đường chéo thu được là: 66 - 12 = 54 đường chéo

  • Câu 10: Nhận biết

    Tính số trận đấu

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 11: Thông hiểu

    Tìm đáp án đúng

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b, c, d, e là: A_6^4 = 360 cách

    => Số các số tự nhiên có 5 chữ số đôi một khác nhau được tạo thành là: 360 . 6 = 2160 số

  • Câu 12: Thông hiểu

    Tính xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau

    Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau:

    Số phần tử của không gian mẫu là: 6 . 6 . 6 = 216

    Giả sử B là biến cố "số chấm xuất hiện trên 3 con súc sắc đó bằng nhau"

    Ta có các khả năng như sau: (1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)

    => Số phần tử của biến cố B là n\left( B ight) = 6

    => Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau là: 

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{216}} = \frac{1}{{36}}

  • Câu 13: Thông hiểu

    Tính số phần tử của biến cố B

    Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?

    Ta có: n(\Omega) = 7! = 5040

    Biến cố B là hai quyển sách cùng loại nằm cạnh nhau

    \Rightarrow \overline{B} là biến cố các quyển sách không cùng loại nằm cạnh nhau.

    Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.

    \Rightarrow n\left( \overline{B} ight)
= 3!.4! = 144

    \Rightarrow n(B) = n(\Omega) - n\left(
\overline{B} ight) = 5040 - 144 = 4896

  • Câu 14: Vận dụng

    Có bao nhiêu số có 10 chữ số thỏa mãn điều kiện được tạo thành

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 15: Thông hiểu

    Tính số cách chọn 4 viên bi

    Trong một thùng có chứa 7 bi xanh, 5 bi đỏ và 4 bi vàng. Lấy ngẫu nhiên 4 viên bi trong hộp. Hỏi có bao nhiêu cách chọn sao cho 4 viên bi được chọn có đủ ba màu?

    TH1: Lấy 1 bi xanh, 1 bi đỏ và 2 bi vàng ta có: 7.5.C_{4}^{2} cách.

    TH2: Lấy 2 bi xanh, 1 bi đỏ và 1 bi vàng ta có: 4.5.C_{7}^{2} cách.

    TH3: Lấy 1 bi xanh, 2 bi đỏ và 1 bi vàng ta có: 7.4.C_{5}^{2} cách.

    Vậy có tất cả 910 cách chọn số viên bi theo yêu cầu.

  • Câu 16: Vận dụng

    Xét tính đúng sai của các kết luận

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Đáp án là:

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Gọi A là biến cố: “Chọn được hộp A”

    B là biến cố: “Chọn được hộp B”

    C là biến cố: “Chọn được hộp C”

    Ta có:

    P(A) = P(B) = P(C) =
\frac{1}{3}

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{3}.\frac{3}{7} = \frac{1}{7}

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{1}{3}.\frac{2}{5} =
\frac{2}{15}

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{C_{2}^{1}}{C_{4}^{1}} =
\frac{1}{2}

    d) E là biến cố: “Bi chọn ra có màu đỏ”.

    Xác suất để lấy được một viên bi đỏ là

    P\left( E|A ight) =
\frac{4}{7};P\left( E|B ight) = \frac{3}{5};P\left( E|C ight) =
\frac{1}{2}

    Áp dụng công thức ta có:

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    \Rightarrow P(E) =
\frac{1}{3}.\frac{4}{7} + \frac{1}{3}.\frac{3}{5} +
\frac{1}{3}.\frac{1}{2} = \frac{39}{70}

  • Câu 17: Thông hiểu

    Tính xác suất của biến cố B

    Lấy ngẫu nhiên hai viên bi trong hộp có 10 viên bi gồm 4 viên bi đỏ, 3 viên bi xanh, 2 viên bi vàng và 1 viên bi trắng. Tính xác suất của biến cố B “hai viên bi lấy ra có cùng màu”.

    Ta có:

    n(\Omega) = C_{10}^{2} = 45

    Gọi các biến cố

    D lấy được hai viên bi đỏ \Rightarrow
n(D) = C_{4}^{2} = 6

    E lấy được hai viên bi xanh \Rightarrow
n(E) = C_{3}^{2} = 3

    F lấy được 2 viên bi vàng \Rightarrow
n(F) = C_{2}^{2} = 1

    Ta có D, E, F là các biến cố đôi một xung khắc và B = D \cup E \cup F

    \Rightarrow P(B) = P(D) + P(E) +
P(F)

    = \frac{6}{45} + \frac{3}{45} +
\frac{1}{45} = \frac{2}{9}

  • Câu 18: Vận dụng cao

    Điền đáp án vào ô trống

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 19: Thông hiểu

    Tìm xác suất của biến cố

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ cùng màu?

    Gọi A là biến cố lấy được 3 thẻ trắng \Rightarrow P(A) =
\frac{C_{10}^{3}}{C_{25}^{3}}

    B là biến cố lấy được 3 thẻ đỏ \Rightarrow P(B) =
\frac{C_{8}^{3}}{C_{25}^{3}}

    C là biến cố lấy được 3 thẻ xanh \Rightarrow P(C) =
\frac{C_{7}^{3}}{C_{25}^{3}}

    Gọi D là biến cố lấy được 3 thẻ cùng màu

    Khi đó D = A \cup B \cup C

    \Rightarrow P(D) = P(A) + P(B) + P(C)
\approx 0,092

  • Câu 20: Nhận biết

    Tính xác suất để Minh tô sai cả 5 câu

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 9 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo