Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Đường thẳng vuông góc với mặt phẳng CTST

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Đường thẳng vuông góc với mặt phẳng sách Chân trời sáng tạo. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án chính xác nhất

    Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S

    => SO ⊥ AC, SO ⊥ BD

    => SO ⊥ (ABCD)

  • Câu 2: Nhận biết
    Chỉ ra mệnh đề sai

    Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.

    Hướng dẫn:

    Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”

    Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.

  • Câu 3: Vận dụng
    Tính tan góc giữa đường thẳng và mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:

    \begin{matrix}
\left( SC;(ABCD) ight) = (SC;AC) = \widehat{SCA} \\
\Rightarrow SA = AC = 2a\sqrt{2} \\
\end{matrix}

    Gọi O là giao điểm của AC và BD ta có:

    Ta có: \left\{ \begin{matrix}
DO\bot AC \\
DO\bot SA \\
\end{matrix} ight.\  \Rightarrow DO\bot(SAC)=> Hình chiếu của SD trên mặt phẳng (SAC) là SO.

    => \left( SD;(SAC) ight) = (SD;SO) =
\widehat{DSO}

    \left\{ \begin{matrix}DO = \dfrac{1}{2}BD = a\sqrt{2} \hfill \\SO = \sqrt{SA^{2} + AO^{2}} = a\sqrt{10} \hfill \\\end{matrix} ight.

    => \tan\widehat{DSO} = \frac{DO}{SO} =
\frac{\sqrt{5}}{5}

  • Câu 4: Nhận biết
    Khẳng định nào sau đây là khẳng định sai?

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}\widehat{(CD;SA)} = \widehat{(AB;SA)} = 90^{0} \\\Rightarrow \left\{ \begin{matrix}CD\bot SA \\CD\bot SD \\\end{matrix} ight.\  \Rightarrow CD\bot AD \\\end{matrix}

    => ABCD là hình chữ nhật, từ đó ta suy ra

    AC = BD

    AB ⊥ (SAD)

    BC ⊥ AB

    Đáp án SO ⊥ (ABCD) sai

    Nếu SO ⊥ (ABCD) thì \left\{\begin{matrix}CD\bot SO \\CD\bot SA \\\end{matrix} ight.\  \Rightarrow CD\bot AO điều này vô lí

  • Câu 5: Nhận biết
    Mệnh đề nào sau đây đúng?

    Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).

  • Câu 6: Nhận biết
    Tìm tập hợp điểm M

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:

    Hướng dẫn:

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

  • Câu 7: Vận dụng
    Hoàn thành mệnh đề

    Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc \widehat{BAD} = 60^{0} và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: ABCD là hình thoi =>AB = AD mà \widehat{BAD} = 60^{0} nên tam giác ABD là tam giác đều (*)

    Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)

    Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.

  • Câu 8: Thông hiểu
    Tìm khẳng định sai?

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: O và I lần lượt là trung điểm của AC và SC

    => OI là đường trung bình của tam giác SAC

    => OI // SA

    Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)

    Ta có: ABCD là hình chữ nhật => BC ⊥ AB

    Mà SA ⊥ BC => BC ⊥ SB

    Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD

    Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.

    Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”

  • Câu 9: Vận dụng
    Hoàn thành mệnh đề

    Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc \widehat{BAD} = 60^{0} và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: ABCD là hình thoi =>AB = AD mà \widehat{BAD} = 60^{0} nên tam giác ABD là tam giác đều (*)

    Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)

    Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.

  • Câu 10: Thông hiểu
    Khẳng định nào là khẳng định đúng

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 11: Thông hiểu
    Chọn mệnh đề đúng?

    Cho tứ diện ABCD có AB = AC, BD = CD. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC.

    Do tam giác ABC và tam giác BCD lần lượt là tam giác cân tại A và tại D

    => BC ⊥ MA, BC ⊥ MD

    => BC ⊥ (ADM)

    => BC ⊥ AD

  • Câu 12: Thông hiểu
    Xác định khẳng định sai?

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?

    Hướng dẫn:

    Hình vẽ minh họa:

    Vì HA = HB, tam giác ABC cân => CH ⊥ AB

    Ta có: SA ⊥ (ABC) => SA ⊥ CH

    Mà CH ⊥ AB => CH ⊥ (SAB)

    Mặt khác AK thuộc mặt phẳng (SAB

    => CH ⊥ SA, CH ⊥ SB, CH ⊥ AK

    Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 13: Vận dụng
    Khẳng định đúng trong các khẳng định đã cho

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
AD\bot AB \\
SA\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(SAD)

    => Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA

    => \left( SB;(SAD) ight) = (SB;SA) =
\widehat{BSA}

    Xét tam giác SAB vuông ta có:

    \cos\widehat{BSA} = \frac{SA}{SB} =
\frac{SA}{\sqrt{SA^{2} + AB^{2}}} = \frac{2\sqrt{5}}{5}

  • Câu 14: Nhận biết
    Số mặt phẳng vuông góc với đường thẳng

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Hướng dẫn:

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 15: Vận dụng cao
    Tính sin của góc tạo bởi đường thẳng và mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là lục giác đều và AB = BC = CD = a. Mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, \widehat{\left( SC,(ABCD) ight)} =
60^{0}. Tính sin của góc tạo bởi SC và mặt phẳng (SAD).

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi I là giao điểm của AC và BD

    Ta có: \left\{ \begin{matrix}
(SAC)\bot(ABCD) \\
(SBD)\bot(ABCD) \\
(SAC) \cap (SBD) = SI \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Ta có góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc SCI

    =>\widehat{\left( SC,(ABCD) ight)} =
\widehat{SCI} = 60^{0}

    Xét tam giác BCD có:

    \begin{matrix}BD^{2} = BC ^{2} + CD^{2} - BD.CD.cos\widehat{BCD} \hfill\\= a^{2} + a^{2} - 2.a.a.cos120^{0} = 3a^{2} \hfill \\\Rightarrow AC = BD = a\sqrt{3} \hfill \\\end{matrix}

    Vì BC // AD => \Delta IBC\sim\Delta
IDA \Rightarrow \frac{IC}{IA} = \frac{BC}{AD} = \frac{1}{2}

    \begin{matrix}\Rightarrow \dfrac{IC}{AC - IC} = \dfrac{1}{2} \hfill \\\Rightarrow \dfrac{IC}{a\sqrt{3} - IC} = \dfrac{1}{2} \hfill \\\Rightarrow IC = \dfrac{a\sqrt{3}}{3} \hfill \\\Rightarrow IA = 2IC = \dfrac{2a\sqrt{3}}{3} \hfill \\\end{matrix}

    Xét tam giác SIC vuông tại I ta có: \left\{ \begin{matrix}SI = IC.\tan60^{0} = a \\SC = \dfrac{IC}{\cos60^{0}} = \dfrac{2a\sqrt{3}}{3} \\\end{matrix} ight.

    Gọi O là trung điểm của AD

    Xét tam giác AID cân tại I với trung tuyến IO ta có:

    \begin{matrix}IO^{2} = \dfrac{IA^{2} + ID^{2}}{2} - \dfrac{AD^{2}}{4} = \dfrac{a^{2}}{3} \hfill\\\Rightarrow IO = \dfrac{a\sqrt{3}}{3} \hfill\\\end{matrix}

    Dựng HI vuông góc với SO tại H => d\left( I;(SAD) ight) = IH =
\frac{a}{2}

    Ta có:

    \begin{matrix}CI \cap (SAD) = A  \hfill\\\Rightarrow \dfrac{d\left( C;(SAD) ight)}{d\left( I,(SAD) ight)} =\dfrac{AC}{AI} = \dfrac{3}{2}\hfill \\\Rightarrow d\left( C;(SAD) ight) = \dfrac{3a}{4} \hfill\\\end{matrix}

    Gọi K là hình chiếu vuông goc của C trên mặt phẳng (SAD)

    => SK là hình chiếu vuông góc của CK trên mặt phẳng (SAD) và CK = d\left( C;(SAD) ight) =
\frac{3a}{4}

    => Góc giữa đường thẳng SC và mặt phẳng (SAD) là \widehat{CSK}

    \sin\widehat{CSK} = \frac{CK}{SC} =
\frac{3\sqrt{3}}{8}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (27%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Chân trời sáng tạo

Xem thêm