Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 7 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 7: Đạo hàm nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Hàm số liên tục trên khoảng

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 2: Vận dụng

    Xác định số nghiệm của phương trình

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 3: Thông hiểu

    Xác định đạo hàm của hàm số lượng giác

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Chọn đáp án đúng

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = x^{3} - 3x^{2} + 2x đi qua điểm M( - 1;0)?

    Phương trình đường thẳng đi qua điểm M( -
1;0) có dạng y = a(x + 1) = ax + a\
\ \ (d)

    Đường thẳng (d) là tiếp tuyến khi hệ \left\{ \begin{matrix}
x^{3} - 3x^{2} + 2x = ax + a \\
3x^{2} - 6x + 2 = a \\
\end{matrix} ight. có nghiệm

    Dễ thấy hệ phương trình có ba nghiệm (a;x) phân biệt nên có ba tiếp tuyến thỏa mãn.

  • Câu 5: Thông hiểu

    Chọn khẳng định đúng

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 6: Thông hiểu

    Tính giá trị biểu thức T

    Cho hàm số y =
\sqrt{2x - x^{2}}. Tính giá trị của biểu thức T = y^{3}.y''?

    Ta có: y = \sqrt{2x - x^{2}}

    \Rightarrow y' = \frac{1 -
x}{\sqrt{2x - x^{2}}} \Rightarrow y'' = \frac{- 1}{\left(
\sqrt{2x - x^{2}} ight)^{3}}

    \Rightarrow T = y^{3}.y'' =
\left( \sqrt{2x - x^{2}} ight)^{3}.\frac{- 1}{\left( \sqrt{2x - x^{2}}
ight)^{3}} = - 1

  • Câu 7: Nhận biết

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \sin \left( {\frac{\pi }{6} - 3x} ight)

    Ta có:

    \begin{matrix}  y = \sin \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{6} - 3x} ight).\left( {\dfrac{\pi }{6} - 3x} ight)\prime  \hfill \\   =  - 3\cos \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Tính giá trị biểu thức M

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c. Tính giá trị biểu thức M = a + b + c?

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow M = 8

  • Câu 9: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 10: Vận dụng cao

    Chọn kết quả chính xác

    Cho hàm số y = \left( \sin x
\right)^{\sqrt{\cos x}}. Kết quả nào dưới đây đúng?

    Logarit Nepe hai vế của hàm số y = \left(
\sin x \right)^{\sqrt{\cos x}}, ta có:

    \ln y = \ln\left( \left( \sin x
\right)^{\sqrt{\cos x}} \right) = \sqrt{\cos x}.ln\left( \sin x
\right).

    Tiếp tục đạo hàm hai vế, ta được:

    \left( \ln y \right)' = \left(
\sqrt{\cos x}.ln\left( \sin x \right) \right)'

    \Leftrightarrow \frac{y'}{y} =
\frac{- \sin x}{2\sqrt{\cos x}}.ln\left( \sin x \right) + \sqrt{\cos
x}.\frac{\cos x}{\sin x}.

    Suy ra y' = \left( \sin x
\right)^{\sqrt{\cos x}}\left( \frac{\cos x\sqrt{\cos x}}{\sin x} -
\frac{\sin x.ln\left( \sin x \right)}{2\sqrt{\cos x}}
\right).

    Khi đó: 

    y^{'\left( \frac{\pi}{4} \right)}
= \left\lbrack \sin\left( \frac{\pi}{4} \right)
\right\rbrack^{\sqrt{\cos\frac{\pi}{4}}}.\left( \frac{\cos\left(
\frac{\pi}{4} \right).\sqrt{\cos\left( \frac{\pi}{4}
\right)}}{\sin\left( \frac{\pi}{4} \right)} - \frac{\sin\left(
\frac{\pi}{4} \right).ln\left( \sin\left( \frac{\pi}{4} \right)
\right)}{2\sqrt{\cos\left( \frac{\pi}{4} \right)}} \right)

    = \left( \frac{\sqrt{2}}{2}
\right)^{\frac{1}{\sqrt[4]{2}}}.\left( \frac{1}{\sqrt[4]{2}} -
\frac{\frac{\sqrt{2}}{2}.ln\left( \frac{\sqrt{2}}{2}
\right)}{2.\frac{1}{\sqrt[4]{2}}} \right)= e^{- \frac{1}{2\sqrt[4]{2}}ln2}\left(
\frac{1}{\sqrt[4]{2}} + \frac{ln2}{4\sqrt[4]{2}} \right).

  • Câu 11: Thông hiểu

    Tìm tập hợp các giá trị m

    Cho hàm số y =
x^{3} + mx^{2} + 3x - 5 với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình y'
= 0 có hai nghiệm phân biệt?

    Ta có:

    y = x^{3} + mx^{2} + 3x - 5

    \Rightarrow y' = 3x^{2} + 2mx +
3

    Để y' = 0 có hai nghiệm phân biệt:

    \Delta > 0 \Leftrightarrow m^{2} - 9
> 0

    \Leftrightarrow m \in ( - \infty; - 3)
\cup (3; + \infty)

  • Câu 12: Nhận biết

    Tính hệ số góc k

    Tìm hệ số góc k của tiếp tuyến của parabol y = x^{2} tại điểm có hoành độ \frac{1}{2}.

    Ta có:

    y'\left( \dfrac{1}{2} ight) =\lim_{\Delta x ightarrow 0}\dfrac{f\left( \dfrac{1}{2} + \Delta xight) - f\left( \dfrac{1}{2} ight)}{\Delta x}

    = \lim_{\Delta x ightarrow0}\dfrac{\left( \dfrac{1}{2} + \Delta x ight)^{2} - \left( \dfrac{1}{2}ight)^{2}}{\Delta x}

    = \lim_{\Delta x ightarrow 0}(1 +\Delta x) = 1

  • Câu 13: Vận dụng

    Viết phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng \frac{3}{5}.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Suy ra phương trình tiếp tuyến d có dạng y + y_{0} = k\left( x - x_{0} ight)

    => Tiếp tuyến d có một vecto pháp tuyến là \overrightarrow{n_{d}} = ( - k;1)

    Đường thẳng \Delta có một vecto pháp tuyến là: \overrightarrow{n_{\Delta}} =(4; - 3)

    Theo đề bài ta có:

    \cos(d;\Delta) = \frac{| - 4k -3|}{\sqrt{k^{2} + 1}.\sqrt{16 + 9}} = \frac{3}{5}

    \Leftrightarrow \left\lbrack\begin{matrix}k = 0 \\k = - \dfrac{24}{7} \\\end{matrix} ight.

    Với k = - \frac{24}{7}ta có: 3{x_{0}}^{2} - 6x_{0} = -\frac{24}{7} (vô nghiệm)

    Với k = 0 ta có: 3{x_{0}}^{2} - 6x_{0} = 0 \Leftrightarrow\left\lbrack \begin{matrix}x_{0} = 0 \\x_{0} = 2 \\\end{matrix} ight.

    Nếu x_{0} = 0 \Rightarrow y_{0} =2=> Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2

    Nếu x_{0} = 2 \Rightarrow y_{0} = -2=> Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2

  • Câu 14: Thông hiểu

    Tính đạo hàm cấp hai của hàm số

    Cho hàm số y =
f(x) = (3x - 7)^{5}. Xác định f''(2)?

    Ta có: y = f(x) = (3x -
7)^{5}

    \Rightarrow f'(x) = 15(3x -
7)^{4}

    \Rightarrow f''(x) = 180.(3x -
7)^{3}

    \Rightarrow f''(2) = 180.(3.2 -
7)^{3} = - 180

  • Câu 15: Nhận biết

    Điền đáp án vào ô trống

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 16: Nhận biết

    Hàm số f(x) liên tục trên khoảng

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 17: Vận dụng cao

    Tìm tọa độ điểm thỏa mãn điều kiện

    Trên đồ thị hàm số y = \frac{x + 3}{x +2} tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?

    Ta có:

    Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến k = \pm1.

    Ta có: f'(x) = - \frac{1}{(x +2)^{2}}

    => Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:

    - \frac{1}{(x + 2)^{2}} = - 1\Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight.

    Hai điểm thỏa mãn ( - 3;0),( -1;2)

  • Câu 18: Nhận biết

    Chọn công thức hàm số

    Hàm số nào sau đây có đạo hàm bằng \frac{1}{\sqrt{2x}}?

    Ta có:

    f'(x) = \left( \sqrt{2x}
ight)' = \frac{1}{\sqrt{2x}}

  • Câu 19: Thông hiểu

    Ghi đáp án vào ô trống

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = 2{\sin ^2}x-\cos 2x + x

    Ta có:

    \begin{matrix}  y = 2{\sin ^2}x - \cos 2x + x \hfill \\  y = 1 - \cos 2x - \cos 2x + x \hfill \\  y = 1 - 2\cos 2x + x \hfill \\   \Rightarrow y' = 4\sin 2x + 1 \hfill \\ \end{matrix}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo