Hàm số liên tục trên khoảng
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 7: Đạo hàm nha!
Hàm số liên tục trên khoảng
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Xác định số nghiệm của phương trình
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Xác định đạo hàm của hàm số lượng giác
Tính đạo hàm của hàm số ![]()
Ta có:
Chọn đáp án đúng
Có bao nhiêu tiếp tuyến của đồ thị hàm số
đi qua điểm
?
Phương trình đường thẳng đi qua điểm có dạng
Đường thẳng (d) là tiếp tuyến khi hệ có nghiệm
Dễ thấy hệ phương trình có ba nghiệm phân biệt nên có ba tiếp tuyến thỏa mãn.
Chọn khẳng định đúng
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức
, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.
Ta có:
Ta có:
Gia tốc của chất điểm là:
Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là
Tính giá trị biểu thức T
Cho hàm số
. Tính giá trị của biểu thức
?
Ta có:
Tính đạo hàm của hàm số
Tính đạo hàm của hàm số ![]()
Ta có:
Tính giá trị biểu thức M
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Ghi đáp án đúng vào ô trống
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Chọn kết quả chính xác
Cho hàm số
. Kết quả nào dưới đây đúng?
Logarit Nepe hai vế của hàm số ta có:
.
Tiếp tục đạo hàm hai vế, ta được:
.
Suy ra .
Khi đó:
.
Tìm tập hợp các giá trị m
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Tính hệ số góc k
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Suy ra phương trình tiếp tuyến d có dạng
=> Tiếp tuyến d có một vecto pháp tuyến là
Đường thẳng có một vecto pháp tuyến là:
Theo đề bài ta có:
Với ta có:
(vô nghiệm)
Với ta có:
Nếu => Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2
Nếu => Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2
Tính đạo hàm cấp hai của hàm số
Cho hàm số
. Xác định
?
Ta có:
Điền đáp án vào ô trống
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Hàm số f(x) liên tục trên khoảng
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tìm tọa độ điểm thỏa mãn điều kiện
Trên đồ thị hàm số
tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?
Ta có:
Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến .
Ta có:
=> Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:
Hai điểm thỏa mãn
Chọn công thức hàm số
Hàm số nào sau đây có đạo hàm bằng
?
Ta có:
Ghi đáp án vào ô trống
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Ta có vận tốc tại thời điểm t là:
Từ thời điểm , viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:
Tính đạo hàm của hàm số
Tính đạo hàm của hàm số ![]()
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: