Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 4: Quan hệ song song trong không gian nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn khẳng định đúng

    Cho hai mặt phẳng (∝), (β) cắt nhau và cùng song song với đường thẳng d. Khẳng định nào sau đây là đúng?

    Khảng định đúng là: "Giao tuyến của (∝), (β) song song với d".

  • Câu 2: Nhận biết

    Chọn khẳng định đúng

    Hình chiếu của hình vuông không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta được

    Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.

  • Câu 3: Thông hiểu

    Chọn phát biểu đúng

    Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Gọi O là tâm hình bình hành ABCD

    Ta có: 2NC = SN \Rightarrow \frac{{NC}}{{SC}} = \frac{1}{3}

    M là trọng tâm tam giác BCD => \frac{{MC}}{{OC}} = \frac{2}{3}

    ABCD là hình bình hành => AO = OC

    => \frac{{MC}}{{AC}} = \frac{{MC}}{{2OC}} = \frac{2}{{2.3}} = \frac{1}{3}

    Xét tam giác SAC có:

    \frac{{MC}}{{AC}} = \frac{{NC}}{{SC}} = \frac{1}{3}

    Theo định lí Ta - lét suy ra MN // SA

  • Câu 4: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho tứ diện ABCD có tất cả các cạnh bằng a. Lấy I là trung điểm của AC, J \in
AD sao cho \frac{AJ}{AD} =
2. Giả sử mặt phẳng (\alpha) chứa IJ và song song với AB. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh hoạ

    Trong mp(ABD) kẻ JN // AB, (N ∈ BD).

    Trong mp(ABC) kẻ IM // AB, (M ∈ BC).

    Gọi P là điểm đối xứng của C qua D.

    Khi đó AD = \frac{1}{2}CD =
BD

    => Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.

    \Rightarrow \frac{PJ}{PI} =
\frac{PN}{PM} = \frac{2}{3}

    Ta lại có: \frac{S_{PJN}}{S_{PIM}} =
\frac{PJ}{PI}.\frac{PN}{PM} = \frac{2}{3}.\frac{2}{3} =
\frac{4}{9}

    \Rightarrow \frac{S_{JNMI}}{S_{PIM}} =
\frac{5}{9}

    Mặt khác

    JN//AB \Rightarrow \frac{JN}{AB} =
\frac{DJ}{DA} = \frac{1}{3} \Rightarrow JN = \frac{1}{3}AB =
\frac{a}{3}

    IM//AB \Rightarrow \frac{IM}{AB} =
\frac{CI}{CA} = \frac{1}{2} \Rightarrow IM = \frac{1}{2}AB =
\frac{a}{2}

    Trong tam giác PAC vuông tại A ta có:

    AP = \sqrt{CP^{2} - AC^{2}} =
\sqrt{(2a)^{2} - a^{2}} = a\sqrt{3}

    PI = \sqrt{AI^{2} + AP^{2}} =
\sqrt{\left( \frac{a}{2} ight)^{2} + \left( a\sqrt{3} ight)^{2}} =
\frac{a\sqrt{13}}{2} = PM

    Diện tích tam giác PIM

    S_{PIM} = \sqrt{p(p - PI)(p - PM)(p -
IM)}

    Với p = \frac{PI + PM + IM}{2} = \frac{1
+ 2\sqrt{13}}{4}.a

    \Rightarrow S_{PIM} =
\frac{a^{2}\sqrt{51}}{16}

    \Rightarrow S_{JNMI} =
\frac{5}{9}S_{PIM} = \frac{5a^{2}\sqrt{51}}{144}

  • Câu 5: Vận dụng

    Tìm giao điểm của đường thẳng và mặt phẳng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh ADBC; G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng MG(ABC)

    Hình vẽ minh họa

    Trong (ADN) gọi K = AN \cap MG, mà AN \subset (ABC)

    \Rightarrow K = MG \cap
(ABC)

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD), gọi K = BMAD

    Ta có: \left\{ \begin{gathered}
  K \in AD \hfill \\
  AD \in \left( {SAD} ight) \hfill \\ 
\end{gathered}  ight. \Rightarrow K \in \left( {SAD} ight)K \in BM nên K là giao điểm của BM với mặt phẳng (SAD).

  • Câu 7: Vận dụng

    Tìm hình xác định bởi các giao tuyến

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 8: Nhận biết

    Chọn mệnh đề sai

    Chọn mệnh đề sai.

    Qua phép chiếu song song không thể biến một tứ diện thành một đường thẳng vì các cạnh của tứ diện đều là đoạn thẳng.

    Nó cũng không thể biến tứ diện thành một đoạn thẳng vì khi đó các cạnh của tứ diện nằm trong một mặt phẳng.

  • Câu 9: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 10: Vận dụng

    Tìm ba điểm thẳng hàng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của các cạnh ABCD. Mặt phẳng qua MN cắt AD,BC lần lượt tại P,Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
I \in MP \subset (ABD) \\
I \in NQ \subset (BCD) \\
\end{matrix} ight.

    \Rightarrow I \in (BCD) \cap
(ABD)

    BD = (BCD) \cap (ABD)

    Vậy ba điểm I,B,D thẳng hàng.

  • Câu 11: Nhận biết

    Tìm câu sai

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 12: Thông hiểu

    Đường thẳng nào song song với d

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử (SAD) \cap (SBC) = d. Đường thẳng nào song song với d trong các đường thẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}AD//BC \\AD \subset (SAD) \\BC \subset (SBC) \\S \in (SAD) \cap (SBC) \\\end{matrix} ight.

    = > (SAD) \cap (SBC) =St//AD//BC

    => (SAD) \cap (SBC) = St hay St \equiv d

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) là đường thẳng St song song với đường thẳng AD.

  • Câu 13: Thông hiểu

    Chọn khẳng định sai

    Trong không gian, cho ba đường thẳng phân biệt a, b, c trong đó a//b. Khẳng định nào sau đây sai?

     Nếu c cắt a thì c cắt b hoặc c chéo b.

    Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."

  • Câu 14: Vận dụng

    Chọn khẳng định đúng

    Cho tứ diện ABCDP,Q lần lượt là trung điểm của AB,CD. Lấy R
\in BC sao cho BR = 2RC. Biết S = AD \cap (PQR), chọn khẳng định đúng dưới đây.

    Hình vẽ minh họa

    Gọi M = RQ \cap BD

    Xét mặt phẳng (ABD) gọi S = PM \cap AD

    => S = AD \cap (PQR)

    Áp dụng định lí Menelaus trong tam giác ABD với cát tuyến PSM ta được:

    \frac{PA}{PB}.\frac{MB}{MD}.\frac{SD}{SA} =
1

    \Leftrightarrow
1.\frac{MB}{MD}.\frac{SD}{SA} = 1 (*)

    Áp dụng định lí Menelaus trong tam giác BCD với cát tuyến RQM ta được:

    \frac{RC}{RB}.\frac{MB}{MD}.\frac{QD}{QA} =
1

    \Leftrightarrow
\frac{1}{2}.\frac{MB}{MD}.1 = 1

    \Leftrightarrow \frac{MB}{MD} =
2(**)

    Từ (*) và (**) suy ra SA =
2SD

  • Câu 15: Thông hiểu

    Chọn mệnh đề đúng

    Cho m,n là hai đường thẳng phân biệt và mặt phẳng (\alpha). Chọn mệnh đề đúng?

    Ta có:

    \left\{ \begin{matrix}
m ⊄ (\alpha) \\
m\bot n \\
n \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.

    \left\{ \begin{matrix}
m\bot n \\
n\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai trong trường hợp

    \left\{ \begin{matrix}
m \cap (\alpha) = H \\
n \cap (\alpha) = H \\
\end{matrix} ight.\  \Rightarrow m \cap n = H đúng vì là hai đường thẳng phân biệt.

    \left\{ \begin{matrix}
m\bot n \\
m \cap (\alpha) = P \\
\end{matrix} ight.\  \Rightarrow n \cap (\alpha) = P sai vì đường thẳng hoặc

  • Câu 16: Nhận biết

    Chọn khẳng định đúng

    Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

    Chọn khẳng định đúng

    Gọi E là trung điểm của AB

    Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:

    \frac{{EM}}{{EC}} = \frac{{EN}}{{ED}} = \frac{1}{3} 

    Theo định lí Ta - lét ta có: MN // CD (1)

    CD \subset \left( {BCD} ight);CD \subset \left( {ACD} ight) (2)

    Từ (1) và (2) => MN // (BCD); MN // (ACD)

  • Câu 17: Nhận biết

    Tìm câu sai

    Cho biết mệnh đề nào sau đây sai?

    Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.

  • Câu 18: Thông hiểu

    Tìm các cặp cạnh cắt nhau

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 19: Thông hiểu

    Tìm phát biểu đúng, phát biểu sai

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Hình vẽ minh họa

    Xét tam giác DBC có \frac{DO}{DB} =\frac{DK}{DC} = \frac{1}{3} \Rightarrow OK//BC

    Xét tam giác ABC có: \frac{AO}{AC} =\frac{AJ}{AB} = \frac{2}{3} \Rightarrow OJ//BC

    Suy ra ba điểm O; K; J thẳng hàng

    Suy ra (IJK) \cap (ABCD) = OK đúng

    Tương tự ta cũng chúng minh được OH//IJ (Vì OH//SB;IJ//SB)

    Suy ra H \in (IJO) \Rightarrow (IJO) \cap(SBD) = OH

    Gọi F là trung điểm của SA khi đó \frac{SI}{SF} = \frac{SH}{SD} = \frac{2}{3}\Rightarrow IH//DF

    Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.

    Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.

  • Câu 20: Thông hiểu

    Điền đáp án vào ô trống

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

  • Câu 21: Nhận biết

    Chọn mệnh đề đúng

    Cho mặt phẳng (P) và đường thẳng d ∈ (P). Mệnh đề nào sau đây đúng:

    Mệnh đề đúng: "\forall A,A \in d \Rightarrow A \in (P)".

  • Câu 22: Thông hiểu

    Tìm hình chiếu của điểm A

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Phép chiếu song song theo phương AB lên mặt phẳng (SBC) biến điểm A thành:

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương AB lên mặt phẳng (SBC) là điểm B.

  • Câu 23: Nhận biết

    Chọn đáp án đúng

    Gọi d là giao tuyến của mặt phẳng (P)(Q). Nếu đường thẳng d' song song với cả hai mặt phẳng thì:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

  • Câu 24: Thông hiểu

    Tìm kết luận sai

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 25: Thông hiểu

    Chọn phát biểu đúng

    Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?

    Phương án "Giao tuyến của (SAC) và (SBD) là SO." đúng vì O là giao điểm của AC và BD nên O là điểm chung của (SAC) và (SBD). Hơn nữa, S là điểm chung của (SAC) và (SBD).

    Phương án "Giao tuyến của (SAB) và (SCD) là điểm S." sai vì giao tuyến của hai mặt phẳng không thể là điểm

    Phương án "Giao tuyến của (SBC) và (SCD) là SK, với K là giao điểm của SD và B" sai vì SD và BC không cắt nhau

    Phương án "Giao tuyến của (SOC) và (SAD) là SM, với M là giao điểm của AC và S." sai vì AC và SD không cắt nhau

  • Câu 26: Nhận biết

    Xét tính đúng sai của mỗi ý hỏi

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    a) Đúng

    Đúng vì theo tính chất thừa nhận: Có một và chỉ một mặt phẳng đi qua 3 điểm không

    thẳng hàng.

    b) Sai

    Sai vì điểm cần thêm điều kiện điểm không thuộc đường thẳng.

    c) Đúng

    Đúng vì theo các cách xác định một mặt phẳng thì có duy nhất một mặt phẳng chứa hai

    đường thẳng cắt nhau.

    d) Sai

    Sai vì cần thêm điều kiện hai mặt phẳng phân biệt.

  • Câu 27: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Hình vẽ minh họa

    (SAD),(SCF),(SBE)có chung giao tuyến SO.

  • Câu 28: Nhận biết

    Chọn khẳng định đúng

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q lần lượt là trung điểm của BC,CD,SB,SD. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có MN là đường trung bình tam giác BDC \Rightarrow MN//BD (1)

    Ta có PQ là đường trung bình của tam giác SBD \Rightarrow
PQ//BD(2).

    \Rightarrow MN//PQ.

  • Câu 29: Thông hiểu

    Tính tỉ số độ dài

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Lấy các điểm M \in SB,N \in SD sao cho \frac{SM}{MB} = 2;\frac{SN}{SD} =
\frac{1}{3}. Hình chiếu của M,N qua phép chiếu song song phương SO mặt phẳng chiếu (ABCD)lần lượt là P,Q. Tỉ số độ dài \frac{PO}{QO} bằng bao nhiêu?

    Hình vẽ minh hoạ

    Do P là hình chiếu song song của M qua phép chiếu song song phương SO

    \Rightarrow \frac{MB}{SB} =
\frac{BP}{BO}

    \frac{SM}{MB} = 2 \Rightarrow SM =
2MB

    \Rightarrow \frac{BP}{BO} = \frac{1}{3}
\Rightarrow \frac{OP}{OB} = \frac{2}{3}

    Chứng minh tương tự ta có: \frac{OQ}{OD}
= \frac{1}{3}

    Ta có: BO = DO \Rightarrow \frac{OP}{OQ}
= \frac{1}{2}

  • Câu 30: Nhận biết

    Xác định mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề đúng là “Hai đường thẳng chéo nhau thì không có điểm chung ”.

  • Câu 31: Thông hiểu

    Tìm hình chiếu song song của điểm M

    Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?

    Gọi H là trung điểm của tam giác AB.

    M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.

    Khi đó ta có: \frac{{HM}}{{HC}} = \frac{{HQ}}{{HD}} = \frac{1}{3}

    Theo định lí Ta - lét ta có: MQ//CD

    Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.

  • Câu 32: Vận dụng cao

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Tìm khẳng định đúng

    Trong các khẳng định sau, khẳng định nào đúng?

    Khẳng định đúng: "Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau."

  • Câu 34: Thông hiểu

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD. Gọi I là trung điểm AB,\ \ J là điểm thuộc cạnh AD sao cho JD
= \frac{1}{3}JA, gọi E = IJ \cap
BD. Tìm giao tuyến của mp(CIJ)mp(BCD). Giao tuyến của mp(CIJ)mp(BCD) cắt đoạn BD tại mấy điểm.

    Đáp án: 0

    Đáp án là:

    Cho tứ diện ABCD. Gọi I là trung điểm AB,\ \ J là điểm thuộc cạnh AD sao cho JD
= \frac{1}{3}JA, gọi E = IJ \cap
BD. Tìm giao tuyến của mp(CIJ)mp(BCD). Giao tuyến của mp(CIJ)mp(BCD) cắt đoạn BD tại mấy điểm.

    Đáp án: 0

    Hình vẽ minh họa

    Trong mặt phẳng (ABD), có E = IJ \cap BD.

    Suy ra E không thuộc đoạn BD.

    Ta có: \left\{ \begin{matrix}
E \in IJ;IJ \subset (CIJ) \\
E \in BD;BD \subset (BCD) \\
\end{matrix} ight.

    \Rightarrow E \in (CIJ) \cap
(BCD)

    \Rightarrow CE = (CIJ) \cap
(BCD)

    C,E không thuộc đoạn BD nên giao tuyến của mp(CIJ)mp(BCD) không cắt đoạnBD.

  • Câu 35: Nhận biết

    Tìm khẳng định đúng

    Cho hình chóp S.ABCD. Trong các khẳng định sau, khẳng định nào đúng?

    Hình vẽ minh họa

    Khẳng định đúng là “SACD là hai đường thẳng chéo nhau.”

  • Câu 36: Thông hiểu

    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 37: Nhận biết

    Tìm mệnh đề đúng

    Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.

    Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.

    Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.

    Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”

  • Câu 38: Vận dụng

    Xác định giao tuyến các mặt phẳng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O, M là trung điểm của BC. Các giao tuyến của hình chóp S.ABCD với mặt phẳng đi qua điểm M và song song với ACSB là hình gì?

    Hình vẽ minh họa:

    Gọi mặt phẳng đi qua điểm M và song song với ACSB là mặt phẳng (\alpha).

    \Rightarrow (\alpha) \cap (ABCD) =
MN với MN//AC hay MN//AC là trung điểm của AC.

    (\alpha)//SB,N \in (\alpha)

    Suy ra (\alpha) \cap (SAB) = NP với NP//SB hay P là trung điểm của SA.

    (\alpha)//AC,P \in (\alpha)

    Suy ra (\alpha) \cap (SAC) = PQ với PQ//AC hay Q là trung điểm của SC.

    Xét mặt phẳng (ABCD) gọi I = MN \cap
CD, trong (SCD) gọi H = QI \cap
SD suy ra (\alpha) \cap (SCD) =
QH

    Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng (\alpha) là ngũ giác MNPHQ.

  • Câu 39: Thông hiểu

    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 40: Nhận biết

    Chọn khẳng định đúng

    Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."

  • Câu 41: Thông hiểu

    Xác định thiết diện

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của BCBD, lấy điểm E \in AD;E eq A;E eq D. Thiết diện cắt bởi mặt phẳng (IJE) với tứ diện ABCD là:

    Hình vẽ minh họa

    Vì I và J là trung điểm của BC và BD nên IJ//CD (1)

    \left\{ \begin{matrix}
IJ \subset (IJE) \\
CD \subset (ACD) \\
E \in (IJE) \cap (ACD) \\
\end{matrix} ight. nên giao tuyến của hai mặt phẳng (ACD)(IJE) là đường thẳng d qua E và song song với CD.

    Gọi F = d \cap AC ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng (IJE).

    Vì EF//IJ nên IJEF là hình thang.

  • Câu 42: Vận dụng

    Tìm tỉ số độ dài

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm K,L là trung điểm, trên cạnh CD lấy điểm N sao cho \frac{CN}{DN} = 2. Gọi P = AD \cap (NKL), khi đó tỉ số độ dài giữa APDP là:

    Hình vẽ minh họa

    Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d

    => d // AC

    Xét mặt phẳng (DAB) qua N dựng d song song AC

    => {P} = AD ∩ d

    Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:

    \frac{DP}{DA} = \frac{DN}{DC} =
\frac{PN}{AC}

    Ta lại có: \frac{CN}{DN} = 2 \Rightarrow
\frac{DN}{DC} = \frac{1}{3} \Rightarrow \frac{DP}{DA} =
\frac{1}{3}

    \Rightarrow \frac{AP}{DP} =
2

  • Câu 43: Thông hiểu

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD. Gọi G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD. Tìm tỉ số \frac{G_{1}G_{2}}{AB} (làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Đáp án là:

    Cho tứ diện ABCD. Gọi G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD. Tìm tỉ số \frac{G_{1}G_{2}}{AB} (làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Hình vẽ minh họa

    Ta có:

    G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD nên BG _ { 1 }, AG_{2}CD đồng qui tại M(là trung điểm của CD) .

    G_{1}G_{2}//AB nên G_{1}G_{2}//(ABD)G_{1}G_{2}//(ABC).

    Lại có \frac{G_{1}G_{2}}{AB} =
\frac{MG_{1}}{MB} = \frac{1}{3} = 0,33

  • Câu 44: Vận dụng

    Chọn đáp án đúng

    Cho hình thang ABCD AD//BC,AD = 3BC. Lấy điểm S bất kì, S
otin (ABCD). Gọi M,N lần lượt là trung điểm của AB,AC, G là trọng tâm tam giác (SAD). Khi đó giao tuyến được tạo bởi mặt phẳng (GMN) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Gọi (GMN) \cap (SAD) = d

    Xét ba mặt phẳng (GMN);(SAD);(ABCD).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AD,MN đồng quy hoặc đôi một song song. Mà AD//MN \Rightarrow d//AD

    Giả sử: d cắt SA;SD lần lượt tại E;F.

    Khi đó thiết diện của hình chóp S.ABCD cắt bởi (GMN) là hình thang MNFE.

    Ta có:

    MN = \frac{AD + BC}{2} = \frac{AD +
\frac{1}{3}AD}{2} = \frac{2}{3}AD

    Ta có: G là trọng tâm tam giác SAD

    => MN = EF

    => Hình thang MNFE là hình bình hành.

  • Câu 45: Thông hiểu

    Tìm hình tạo bởi các giao tuyến

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi, AC \cap BD = O. Gọi (\alpha) là mặt phẳng qua O song song với các đường thẳng AB,SC. Xác định các giao tuyến của (\alpha) với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh hoạ

    Xét mặt phẳng (ABCD), kẻ đường thẳng qua O và song song với AB, cắt BC;AD lần lượt tại E,F.

    Trong mặt phẳng (SBC), kẻ đường thẳng song song với SC, cắt SB tại I.

    Trong mặt phẳng (SAB), kẻ đường thẳng song song với AB, cắt SA tại K.

    Vậy hình tạo bởi các giao tuyến là hình thang EFKI với IK//EF.

  • Câu 46: Vận dụng

    Tính tỉ số độ dài

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 47: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
(BB'C'C)\ //\ (AA'D'D) \\
(MNP) \cap (BB'C'C) = NP \\
(MNP) \cap (AA'D'D) = MQ \\
\end{matrix} ight.\  \Rightarrow NP\ //\ MQ.

    Tương tự: \left\{ \begin{matrix}
(AA'B'B)\ //\ (CC'D'D) \\
(MNP) \cap (AA'B'B) = MN \\
(MNP) \cap (CC'D'D) = PQ \\
\end{matrix} ight.\  \Rightarrow MN\ //\ PQ

    Suy ra mặt phẳng (MNP) cắt hình hộp theo thiết diện là hình bình hành MNPQ.

    Mặt khác \left\{ \begin{matrix}
BN = \frac{1}{3}BB' = \frac{1}{3}AA' \\
AM = \frac{2}{3}AA' \\
\end{matrix} ight.\  \Rightarrow \frac{BN}{AM} =
\frac{1}{2}.

    Trong mặt phẳng (ABB'A'), gọi E là giao điểm của hai đường thẳng MNAB thì BN là đường trung bình của tam giác AME \Rightarrow N là trung điểm của đoạn thẳng ME.

    Trong mặt phẳng (MNPQ), gọi F là giao điểm của EPMQ thì NP là đường trung bình của tam giác MEF (vì NP\
//\ MQN là trung điểm EM) \Rightarrow NP = \frac{1}{2}MF

    Mà tứ giác MNPQ là hình bình hành nên NP = MQ \Rightarrow Q là trung điểm MF hay \frac{FQ}{FM} = \frac{1}{2}

    Lại có D'Q\ //\ A'M \Rightarrow
\frac{D'Q}{A'M} = \frac{FQ}{FM} = \frac{1}{2}

    \Leftrightarrow\dfrac{D'Q}{\dfrac{1}{3}AA'} = \dfrac{1}{2} \Leftrightarrow\dfrac{D'Q}{DD'} = \frac{1}{2}.\dfrac{1}{3} =\dfrac{1}{6}

  • Câu 48: Nhận biết

    Tìm câu sai

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 49: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD. Trung điểm các cạnh AB,AC lần lượt là các điểm M,N. Giả sử (MND) \cap (BCD) = d. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(DMN) \supset MN \\
(DBC) \supset BC \\
MN//BC \\
\end{matrix} ight.

    => d là đường thẳng song song với MNBC.

    => d song song với (ABC)

  • Câu 50: Nhận biết

    Điều kiện nào không đủ để kết luận

    Trong không gian cho hai mặt phẳng phân biệt (\alpha)(\beta), điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng (\alpha) song song với mặt phẳng (\beta)?

    Mệnh đề: " (\alpha) chứa vô số đường thẳng song song với (\beta)." không đủ để chỉ ra hai mặt phẳng song song (khi các đường thẳng đó song song với nhau).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo