Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 4: Quan hệ song song trong không gian nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Đáp án là:

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Hình vẽ minh họa

    Do \frac{OG}{OA} = \frac{OH}{OB} =
\frac{1}{3} \Rightarrow
HG//AB (Định lý Talet)

    Xét tam giác ABD có: MN//AB (do MN là đường trung bình của tam giác)\Rightarrow HG//MN

    Lại có: HG \cap CN = G

    Vậy HGCD chéo nhau.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

  • Câu 2: Nhận biết

    Tìm khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."

  • Câu 3: Thông hiểu

    Tìm số cạnh của một hình chóp

    Tìm số cạnh của một hình chóp có đáy là một bát giác:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 4: Vận dụng

    Tìm phát biểu sai

    Cho 4 điểm không cùng thuộc một mặt phẳng. Trong các phát biểu sau đây, phát biểu nào là sai?

    Phương án "Trong 4 điểm đã cho không có ba điểm nào thẳng hàng." đúng vì nếu có ba điểm thẳng hàng ( giả sử là A; B; C) thì bốn điểm đã cho luôn thuộc mặt phẳng chứa điểm D còn lại và đường thẳng AB. (mâu thuẫn giả thiết)

    Phương án "Số mặt phẳng đi qua 3 trong 4 điều đã cho là 4." đúng. Số mặt phẳng đi qua 3 trong 4 điểm đã cho là: C_4^3 = 4

    Phương án "Số đoạn thẳng nối hai điểm trong 4 điểm đã cho là 6." đúng. Số đoạn thẳng nối 2 điểm trong 4 điểm đã cho là: C_4^2 = 6

    Vậy phát biểu sai là: "Trong 4 điểm đã cho luôn luôn tồn tại 3 điểm thẳng hàng."

  • Câu 5: Nhận biết

    Chọn đáp án đúng

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 6: Nhận biết

    Chọn kết luận đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa

    Tứ giác MNPQ là hình bình hành.

  • Câu 7: Nhận biết

    Số cạnh của hình chóp ngũ giác

    Hình chóp ngũ giác có bao nhiêu cạnh?

    Hình chóp ngũ giác có 10 cạnh.

  • Câu 8: Thông hiểu

    Tìm giao điểm của đường thẳng AD và mặt phẳng (MNP)

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và BC, lấy điểm P trên cạnh BD sao cho BP = 3PD và I là giao điểm của NP và CD. Giao điểm của đường thẳng AD và mặt phẳng (MNP) là giao điểm của hai đường nào trong các cặp đường thẳng sau?

    Hình vẽ minh họa:

    Giao điểm của đường thẳng AD và mặt phẳng (MNP) là K.

    Vậy giao điểm của đường thẳng AD và mặt phẳng (MNP) là giao điểm của hai đường MI và AD.

  • Câu 9: Thông hiểu

    Tìm giao tuyến của hai mặt phẳng

    Cho hình chóp S.ABC, gọi M là trung điểm của BC. Tìm giao tuyến của hai mặt phẳng (SAM)(SBC).

    Hình vẽ minh họa

    Ta có: S là điểm chung của mặt phẳng (SAM)(SBC) (*)

    Ta có: \left\{ \begin{matrix}
M \in BC \\
BC \subset (SBC) \\
\end{matrix} ight.\  \Rightarrow M \in (SBC)

    => M là điểm chung của mặt phẳng (SAM)(SBC) (**)

    Từ (*) và (**) suy ra (SAM) \cap (SBC) =
SM

  • Câu 10: Thông hiểu

    Tìm kết luận đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB > CD). Lấy một điểm M thuộc cạnh CD. Mặt phẳng (\alpha) qua M song song với SA và BC. Giả sử (\alpha) \cap (SAD) = d. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\alpha) \cap (ABCD) \\
(\alpha)//BC \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (ABCD) =
MN//BC;(N \in AB)

    Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.

    Ta lại có: \left\{ \begin{matrix}
E \in (\alpha) \cap (SAD) \\
(\alpha)//SA \subset (SAD) \\
\end{matrix} ight. suy ra (\alpha) \cap (SAD) = d//SA

  • Câu 11: Nhận biết

    Tìm câu sai

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 12: Thông hiểu

    Chọn khẳng định đúng

    Cho tam giác ABC nằm trong mặt phẳng (\alpha) và phương l. Biết hình chiếu (theo phương l) của tam giác ABC lên mặt phẳng (\beta) là một đoạn thẳng. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song KNTT

    Phương án (\alpha)//(\beta): Hình chiếu của tam giác  ABC  vẫn là một tam giác trên mặt phẳng .

    Phương án (\alpha) \equiv
(\beta): Hình chiếu của tam giác  ABC  vẫn là tam giác  ABC .

    Phương án \left\lbrack \begin{matrix}
(\alpha)//l \\
(\alpha) \supset l \\
\end{matrix} ight. : Khi phương chiếu  l  song song với  (\alpha)  hoặc chứa trong mặt phẳng  (\alpha) . Thì hình chiếu của tam giác  ABC  là một đoạn thẳng trên mặt phẳng (\alpha) .

  • Câu 13: Thông hiểu

    Tìm khẳng định đúng

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 14: Nhận biết

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Mệnh đề đúng là: "Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau hoặc trùng nhau."

  • Câu 15: Vận dụng cao

    Tỉ số độ dài cạnh AB và CD

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 16: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Hình vẽ minh họa

    Ta có:SI = (SBC) \cap (SAD)

    Do \left\{ \begin{matrix}
SI = (SAD) \cap (SBC)\ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AD \subset (SAD)\ ;\ \ BC \subset (SBC) \\
AD \parallel BC \\
\end{matrix} \\
\end{matrix} ight. \Rightarrow
SI \parallel BC \parallel AD .

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 17: Nhận biết

    Điều kiện nào không đủ để kết luận

    Trong không gian cho hai mặt phẳng phân biệt (\alpha)(\beta), điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng (\alpha) song song với mặt phẳng (\beta)?

    Mệnh đề: " (\alpha) chứa vô số đường thẳng song song với (\beta)." không đủ để chỉ ra hai mặt phẳng song song (khi các đường thẳng đó song song với nhau).

  • Câu 18: Nhận biết

    Tìm mặt phẳng song song với đường thẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 19: Vận dụng

    Tính tỉ số hai cạnh MS và MC

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 20: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A', B', C', D' sao cho AA' = 3, BB' = 5, CC' = 4. Tính DD'.

    Đáp án: 2

    Đáp án là:

    Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A', B', C', D' sao cho AA' = 3, BB' = 5, CC' = 4. Tính DD'.

    Đáp án: 2

    Hình vẽ minh họa

    Do (P) cắt mặt phẳng (Ax,By) theo giao tuyến A'B'; cắt mặt phẳng (Cz,Dt) theo giao tuyến C'D', mà hai mặt phẳng (Ax,By)(Cz,Dt) song song nên A'B'//C'D'.

    Tương tự có A'D'//B'C' nên A'B'C'D' là hình bình hành.

    Gọi O, O' lần lượt là tâm ABCDA'B'C'D'.

    Dễ dàng có OO' là đường trung bình của hai hình thang AA'C'CBB'D'D nên OO' = \frac{AA' + CC'}{2} =
\frac{BB' + DD'}{2}.

    Từ đó ta có DD' = 2.

  • Câu 21: Thông hiểu

    Chọn mệnh đề sai

    Chọn mệnh đề sai trong các mệnh đề sau:

    Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.

    Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.

    Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.

  • Câu 22: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 23: Vận dụng

    Tìm thiết diện

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?

    Hình vẽ minh họa

    Tìm thiết diện

    Tìm giao tuyến của 2 mp (MCD) và (SAB)

    CD// AB; CD ⊂ (MCD); AB ⊂ (SAB)

    Điểm M chung

    => Giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB.

    Vậy MN // CD

    Mặt khác MN ≠ CD ( vì MN= 1/2AB ; AB = CD)

    Vậy thiết diện là hình thang CNMD.

  • Câu 24: Nhận biết

    Chọn hình vẽ phù hợp yêu cầu bài toán

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

  • Câu 25: Nhận biết

    Hoàn thành mệnh đề

    Trong không gian, đường thẳng a song song với mặt phẳng (P) nếu

    Đường thẳng  a  song song với mặt phẳng  (P)  khi và chỉ khi  a  không nằm trong (P), đồng thời  a  song song với một đường thẳng b nằm trong  (P) .

  • Câu 26: Thông hiểu

    Xét tính đúng sai của mỗi ý hỏi

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Hình vẽ minh họa

    a) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3}.

    b) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên

    \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3} \Rightarrow IJ//EF

    \ EF \subset (ABCD) \Rightarrow
IJ//(ABCD).

    c) Đúng.

    BC//AD,AD \subset (SAD) \Rightarrow
BC//(SAD).

    EF là đường trung bình của hình bình hành ABCD nên

    BC//EF,EF \subset (SEF) \Rightarrow
BC//(SEF).

    d) Sai.

    Ta có: IJ//EF,EF//BC \Rightarrow
BC//IJIJ \subset (AIJ)
\Rightarrow BC//(AIJ).

  • Câu 27: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 28: Vận dụng

    Xác định giao tuyến các mặt phẳng

    Cho tứ diện ABCD. Lấy các điểm M \in AD,N \in BC sao cho \frac{MA}{AD} = \frac{CN}{BC} =
\frac{1}{3} . Mặt phẳng (\alpha) là mặt phẳng chứa đường thẳng MN và song song với CD. Hình tạo bởi các giao tuyến của (\alpha) và các mặt của tứ diện là:

    Hình vẽ minh họa

    Theo bài ra ta có:

    (\alpha)//CD nên giao tuyến của (\alpha) với (ACD);(BCD) cũng song song với CD.

    Xét mặt phẳng (ACD) kẻ MK//CD;(K \in AC)

    Xét mặt phẳng (BCD) kẻ NE//CD;(E \in BD)

    Hình tạo bởi các giao tuyến của (\alpha) và các mặt của tứ diện là hình thang EMKN.

    Ta có:

    \frac{BN}{BC} = \frac{NE}{CD} =
\frac{2}{3} \Rightarrow NE = \frac{2}{3}CD

    \frac{MA}{AD} = \frac{MK}{CD} =
\frac{1}{3} \Rightarrow MK = \frac{1}{3}CD

    \Rightarrow NE = 2MK

    Vậy hình thang EMKN có đáy lớn gấp 2 lần đáy nhỏ.

  • Câu 29: Thông hiểu

    Xác định khẳng định sai

    Cho mặt phẳng (\alpha) và đường thẳng d ⊄ (\alpha). Khẳng định nào sau đây sai?

    Ta có khẳng định sai là: “Nếu d//(\alpha)b \subset (\alpha) thì b//d."

  • Câu 30: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ giác ABCD và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với SC.Gọi N là giao điểm của đường thẳng SD với mặt phẳng (ABM). Khi đó AN là giao tuyến của hai mặt phẳng nào sau đây?

    Hình vẽ minh họa

    Ta có B \in (ABM) \cap (SBD) (1)

    Gọi O = AC \cap BD,K = AM \cap SO.

    Khi đó: \left\{ \begin{matrix}
K \in AM \subset (ABM) \\
K \in SO \subset (SBD) \\
\end{matrix} \Rightarrow K \in (ABM) \cap (SBD) ight.

    Từ (1) và (2) suy ra (ABM) \cap (SBD) = BK

    Trong mặt phẳng (SBD). Gọi N = BK \cap SD.

    Khi đó: \left\{ \begin{matrix}N \in SD \\N \in BK \subset (ABM) \\\end{matrix} \Rightarrow N = (ABM) \cap SDight.

    Dễ thấy AN = (ABM) \cap(SAD)

  • Câu 31: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Hình vẽ minh họa

    Gọi N,P,Q lần lượt là trung điểm các cạnh SD,SC,BC.

    Gọi E = AD \cap BC,I = MN \cap
PQ ta có S,I,E thẳng hàng vì cùng thuộc giao tuyến của (SAD)(SBC).

    Thiết diện là hình thang MNPQ (vì NP \parallel AB \parallel
MQ).

    Ta có S_{MNPQ} = S_{\Delta IMQ} -
S_{\Delta INP}, mà \frac{NP}{DC} =
\frac{1}{2},\frac{DC}{MQ} = \frac{2}{3} \Rightarrow \frac{NP}{MQ} =
\frac{1}{3}

    \Rightarrow S_{\Delta INP} =
\frac{1}{9}S_{\Delta IMQ}

    \Rightarrow S_{MNPQ} = S_{\Delta IMQ} -
\frac{1}{9}S_{\Delta IMQ} = \frac{8}{9}S_{\Delta IMQ}.

    Ta có M là trung điểm AD, D là trung điểm của AE nên \frac{MI}{SA} = \frac{3}{4}

    \Rightarrow S_{\Delta IMQ} =
\frac{9}{16}S_{\Delta SAB}

    \Rightarrow S_{MNPQ} =
\frac{8}{9}.\frac{9}{16}S_{\Delta SAB} = \frac{1}{2}S_{\Delta
SAB}.

  • Câu 32: Nhận biết

    Chọn khẳng định sai

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.

  • Câu 33: Nhận biết

    Hình tạo bởi các giao tuyến giữa hai mặt phẳng

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Mặt phẳng (\beta) bất kì song song với mặt phẳng (ABC). Hình tạo bởi các giao tuyến giữa hai mặt phẳng trên là:

    Hình vẽ minh họa

    Gọi M,N,P lần lượt là giao điểm của (\beta) với các cạnh AA',BB',CC'.

    Khi đó ta có: \left\{ \begin{matrix}
MN = AB \\
NP = BC \\
PM = AC \\
\end{matrix} ight.

    Vậy hình tạo bởi các giao tuyến giữa hai mặt phẳng là tam giác đều

  • Câu 34: Thông hiểu

    Xác định hình tạo bởi các giao tuyến

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in SC, mặt phẳng (\beta) đi qua M và song song với mặt phẳng (SAB). Khi đó các giao tuyến của mặt phẳng (\beta) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Giao tuyến của (\beta) với (SCD)MQ//CD.

    Giao tuyến của (\beta) với (ABCD)PN//CD.

    Từ đó suy ra các giao tuyến của mặt phẳng (\beta) với các mặt của S.ABCD là hình thang MNPQ.

  • Câu 35: Thông hiểu

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).

    Ta có O = AC ∩ BD là tâm của hình hình hành

    => O = AC ∩ MN (do M, N lần lượt là trung điểm của AD và BC).

    Trong mặt phẳng (ABCD), ta có:

    \left\{ {\begin{array}{*{20}{l}}{O \in AC \subset \left( {SAC} ight) \Rightarrow O \in \left( {SAC} ight)} \\{O \in MN \subset \left( {SMN} ight) \Rightarrow O \in \left( {SMN} ight)}\end{array}} ight.

    => O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).

    Vậy (SMN) ∩ (SAC) = SO

  • Câu 36: Nhận biết

    Tìm điều kiện để đường thẳng và mặt phẳng song song

    Điều kiện để đường thẳng m song song với mặt phẳng (\beta):

    Đường thẳng m song song với mặt phẳng (\beta) khi và chỉ khi m không nằm trong (\beta), đồng thời m song song với một đường thẳng n nằm trong (\beta).

  • Câu 37: Nhận biết

    Tìm mệnh đề sai

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 38: Vận dụng

    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 39: Thông hiểu

    Tìm khẳng định đúng

    Tìm khẳng định đúng.

    Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.

    Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.

    ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.

    => Chọn phương án – có thể là một hình tam giác.

  • Câu 40: Thông hiểu

    Chọn khẳng định đúng

    Khẳng định nào sau đây đúng khi nói về mặt phẳng?

    Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.

  • Câu 41: Vận dụng

    Mặt phẳng nào song song với (IJK)

    Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)

    Hình vẽ minh họa

    Mặt phẳng nào song song với (IJK)

    Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.

    => \frac{{AI}}{{IM}} = \frac{{AJ}}{{JN}} = 2 (tính chất trọng tâm tam giác)

    => IJ//MN(1)

    Xét mặt phẳng (AA'EM) ta có: \frac{{AI}}{{IM}} = \frac{{A'K}}{{KE}} = 2

    => IK//ME

    ME //BB'

    => IK//BB'(2)

    Từ (1) và (2) => (IJK)(BB'C)là hai mặt phẳng phân biệt. Khi đó ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\left( {IJK} ight) e \left( {BB'C'} ight)} \\   {IJ,IK \subset \left( {IJK} ight)} \\   {MN,BB' \subset \left( {BB'C'} ight)} \end{array}} ight. \hfill \\   \Rightarrow \left( {IJK} ight)//\left( {BB'C'} ight) \hfill \\ \end{matrix}

  • Câu 42: Thông hiểu

    Chọn khẳng định đúng

    Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?

     Ta có:

    Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.

    => Hai đường thẳng AD và BC chéo nhau.

  • Câu 43: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 44: Nhận biết

    Chọn phát biểu đúng

    Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Phát biểu đúng là: "MP và NQ chéo nhau"

  • Câu 45: Thông hiểu

    Chọn khẳng định đúng

    Cho hình chóp tứ giác S.ABCD. Gọi M,N lần lượt là trung điểm của SASC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Xét \Delta SACM,N lần lượt là trung điểm SA,SC

    => MN là đường trung bình của \Delta SAC

    => MN//ACAC \subset (ABCD)

    \Rightarrow MN//(ABCD)

  • Câu 46: Nhận biết

    Tìm phát biểu sai

    Tìm phát biểu sai trong các phát biểu sau?

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.

  • Câu 47: Nhận biết

    Chọn khẳng định sai

    Cho mặt phẳng (\alpha) và đường thẳng d ⊄ (\alpha). Khẳng định nào sau đây là sai?

    Mệnh đề Nếu d\ //\
(\alpha)b \subset
(\alpha) thì b\ //\ d“ sai vì bd có thể chéo nhau.

  • Câu 48: Thông hiểu

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 49: Nhận biết

    Chọn mệnh đề đúng

    Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:

    Mệnh đề đúng A \in (P).

  • Câu 50: Thông hiểu

    Xác định hình tạo bởi các giao tuyến

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấyM \in BC;MC =
MB. Giả sử (\gamma) là mặt phẳng đi qua M song song với hai đường thẳng BDSC. Xác định giao tuyến của (\gamma) với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có: MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2) => Các giao tuyến của (\gamma) với các cạnh của hình chóp là hình ngũ giác MNPQR.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo