Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 4 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 4: Quan hệ song song trong không gian nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn khẳng định đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có:

    MN // AD (đường trung bình 4SAD)

    OP // AD (đường trung bình 4BAD)

    => MN // OP

    => O, N, M, P cùng nằm trong một mặt phẳng.

    \left\{ \begin{matrix}MN//AD//BC \subset (SBC) \\OM//SC \subset (SBC) \\\end{matrix} ight.

    \Rightarrow (OMN)//(SBC)

  • Câu 2: Vận dụng

    Tính diện tích hình tạo bởi các giao tuyến

    Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm tam giác ABC. Giả sử mặt phẳng (P) đi qua G và song song với mặt phẳng (BCD). Xác định các giao tuyến của (P) với các mặt của tứ diện đều. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh họa:

    Trong mặt phẳng (ABC) kẻ đường thẳng qua G và song song với BC cắt AC, AB lần lượt tại H, K.

    Trong mặt phẳng (ACD) kẻ đường thẳng qua H và song song với CD cắt AD tại I.

    Hình tạo bởi các giao tuyến cần tìm là KHI.

    \Rightarrow \Delta KHI\ \sim\Delta
BCD theo tỉ số đồng dạng bằng \frac{2}{3}

    \Rightarrow S_{KHI}\  =
\frac{4}{9}S_{BCD} = \frac{4}{9}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{2}\sqrt{3}}{9}

  • Câu 3: Thông hiểu

    Tìm các cặp cạnh cắt nhau

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 4: Thông hiểu

    Tìm các cặp cạnh cắt nhau

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 5: Nhận biết

    Chọn kết luận đúng

    Cho tứ diện ABCD, M \in
BC sao cho \frac{BM}{MC} =
2. Gọi G là trọng tâm tam giác ABD. Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của AD.

    Ta có: \frac{BM}{CB} = \frac{BG}{BP} =
\frac{2}{3} \Rightarrow MG//CP

    CP \subset (ACD) \Rightarrow
MG//(ACD)

  • Câu 6: Nhận biết

    Chọn khẳng định đúng

    Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 7: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 8: Thông hiểu

    Xác định các giao tuyến của tứ diện và mặt phẳng cho trước

    Cho tứ diện ABCD. Lấy I\in AD,J \in BC sao cho AI = 2DI;BJ= 2CJ. Giả sử (\beta) là mặt phẳng qua IJ song song với AB. Xác định các giao tuyến của tứ diện ABCD và mặt phẳng (\beta). Hình tạo bởi các giao tuyến đó là hình gì?

    Giả sử (\beta) cắt các mặt của tứ diện (ABC)(ABD) theo hai giao tuyến JHIK.

    Ta có: \left\{ \begin{matrix}(\beta) \cap (ABC) = JH \\(\beta) \cap (ABD) = IK \\(ABC) \cap (ABD) = AB \\(\beta)//AB \\\end{matrix} ight.

    \Rightarrow JH//IK//AB

    Theo định lí Ta – lét ta có:

    \left\{ \begin{matrix}\dfrac{HJ}{AB} = \dfrac{CJ}{CB} = \dfrac{1}{3} \Rightarrow HJ =\dfrac{1}{3}AB \\\dfrac{IK}{AB} = \dfrac{DJ}{DA} = \dfrac{1}{3} \Rightarrow KI =\dfrac{1}{3}AB \\\end{matrix} ight.

    \Rightarrow HJ = KI

    => HIKJ là hình bình hành

    Do đó hình tạo bởi các giao tuyến của tứ diện ABCD và mặt phẳng (\beta) là hình bình hành HIKJ.

  • Câu 9: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 10: Thông hiểu

    Tìm khẳng định đúng

    Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:

    Hình vẽ minh họa

    Tìm khẳng định đúng

    Xét ΔBFD có OO’ là đường trung bình => OO’ // DF

    Mà DF ⊂ (ADF)

    => OO' // (ADF)

  • Câu 11: Nhận biết

    Chọn khẳng định đúng

    Cho mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó.

    Theo lý thuyết ta có: mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó a // b.

    Vậy a và b không có điểm chung nào.

  • Câu 12: Nhận biết

    Chọn khẳng định đúng

    Chọn khẳng định đúng trong các khẳng định sau.

    Hai đường thẳng song song là hai đường thẳng cùng nằm trên cùng một mặt phẳng và không có điểm chung.

    Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trên một mặt phẳng (hai đường thẳng không có điểm chung thì hai đường thẳng có thể song song hoặc chéo nhau).

    Hai đường thẳng cắt nhau là hai đường thẳng có điểm chung duy nhất.

  • Câu 13: Thông hiểu

    Chọn khẳng định sai

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Từ hình vẽ ta thấy DC'//AB' => "DC', AB' chéo nhau" sai.

  • Câu 14: Nhận biết

    Chọn những khẳng định đúng

    Trong các mệnh đề sau, những mệnh đề nào đúng? (Có thể chọn nhiều đáp án)

     "Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau." sai vì hai mặt phẳng đó có thể cắt nhau.

    "Hai mặt phẳng cùng song song với một mặt phảng thứ ba thì song song với nhau." sai vì hai mặt phẳng có thể trùng nhau.

  • Câu 15: Thông hiểu

    Xét tính đúng sai của mỗi kết luận

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Đáp án là:

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: AD và (ABF) cắt nhau tại A.

    b) Đúng.

    Vì ABCD là hình bình hành nên AD \parallel BC, suy ra AD \parallel (BEC).

    Vì ABEF là hình bình hành nên AF \parallel BE, suy ra AF \parallel (BEC).

    ADAFcắt nhau nên (AFD) \parallel (BEC).

    c) Sai: Vì (ABD) và (EFC) có điểm C chung.

    d) Đúng:

    Vì ABCDABEF là hình bình hành nên AB,\ CD,\ FE đôi một song song

    Mặt khác (AFD) \parallel (BEC) (theo câu b)

    Do đó 6 điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác

  • Câu 16: Nhận biết

    Xác định giao tuyến hai mặt phẳng

    Cho hình chóp S
\cdot ABCDAC \cap BD =
MAB \cap CD = N. Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng

    Hình vẽ minh họa

    Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng SM.

  • Câu 17: Thông hiểu

    Xác định số kết luận đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử G,G' lần lượt là trọng tâm của tam giác SAB;SCD. Cho các khẳng định sau:

    i) GG'//(SBC)

    ii) GG'//(SAD)

    iii) GG'//(SAC)

    iv) GG'//(ABD)

    Hỏi có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Gọi M,N lần lượt là trung điểm của AB và CD

    Do G,G' lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên \frac{SG}{SM} = \frac{SG'}{SN} = \frac{2}{3}
\Rightarrow GG'//MN

    MN \subset (ABCD) \Rightarrow
GG'//(ABCD)

    Ta có: MN//AD//BC \Rightarrow
GG'//AD//BC

    \left\{ \begin{matrix}
BC \subset (SBC) \\
AD \subset (SAD) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
GG'//(SBC) \\
GG'//(SAD) \\
\end{matrix} ight.

    Vậy có 3 khẳng định đúng.

  • Câu 18: Vận dụng

    Ghi đáp án vào ô trống

    Cho tứ diện ABCDG là trọng tâm của \Delta ABDM là một điểm trên cạnh BC sao cho MB= x.MC. Tìm x để đường thẳng MG song song với mặt phẳng (ACD)

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCDG là trọng tâm của \Delta ABDM là một điểm trên cạnh BC sao cho MB= x.MC. Tìm x để đường thẳng MG song song với mặt phẳng (ACD)

    Đáp án: 2

    Gọi K là trung điểm đoạn AD, suy ra \frac{BG}{BK} = \frac{2}{3} (G là trọng tâm của tam giác ABD).

    Ta có MG \subset (BCK)(BCK) \cap (ADC) = KC.

    Do đó MG//(ACD) \LeftrightarrowMG//KC.

    Suy ra \frac{BM}{BC} = \frac{BG}{BK} =\frac{2}{3} \Rightarrow MB = 2MC.

    Vậy x = 2.

  • Câu 19: Thông hiểu

    Tìm tỉ số của hai đoạn thẳng

    Cho hình chóp S.ABCD có đáy ABCD  là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (\alpha) cắt SC tại K. Tính tỉ số \frac{SK}{KC}.

    Hình vẽ minh họa

    Gọi O = AC \cap BD.

    Trong (SAC), kẻ OK//SA\ \ (K \in SC).

    Do đó (\alpha) là mặt phẳng (KBD).

    Vì ABCD là hình bình hành nên O là trung điểm của AC \Rightarrow
\frac{OC}{OA} = 1.

    Do OK//SA \Rightarrow \frac{OC}{OA} =
\frac{KC}{KS} = 1 \Rightarrow \frac{SK}{KC} = 1.

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?

    Chọn khẳng định đúng

    Ta có: G là trọng tâm giác ABD 

    => \frac{{BG}}{{GN}} = 2 = \frac{{BM}}{{MC}} \Rightarrow MG//CN

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo