Tìm mệnh đề sai
Mệnh đề nào trong các mệnh đề sau đây là sai?
Mệnh đề sai: "Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy."
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 4: Quan hệ song song trong không gian nha!
Tìm mệnh đề sai
Mệnh đề nào trong các mệnh đề sau đây là sai?
Mệnh đề sai: "Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy."
Chọn khẳng định đúng
Cho hình chóp
có đáy
là hình bình hành tâm
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa:
Xét hai mặt phẳng và
.
Ta có: và
.
Mà và
.
Do đó
Tìm giao điểm đường thẳng và mặt phẳng
Cho tứ giác
có
là giao điểm của
. Lấy một điểm
bất kì không thuộc
, một điểm
bất kì thuộc cạnh
. Gọi
là giao điểm của
và
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa
Chọn mặt phẳng phụ (SBD) chứa SD.
Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).
Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).
Trong mặt phẳng ( ABCD) có
Trong mặt phẳng (SAC) có
Suy ra
Trong mặt phẳng (SBD) gọi và do
Xác định giao tuyến hai mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SC và SD. Khi đó
là đường thẳng nào?
Hình vẽ minh họa:
M ∈ (MNPQ); M ∈ SA; M ∈ (SAC)
Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); P ∈ SC; P ∈ (SAC).
Vậy P là điểm chung thứ hai.
Vậy giao tuyến của (MNPQ) và (SAC) là: MP
Chọn khẳng định đúng
Cho hình chóp tứ giác
. Gọi
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Xét có
lần lượt là trung điểm
=> là đường trung bình của
=> mà
Chọn khẳng định đúng
Cho hình lăng trụ
. Gọi
là trung điểm của
. Điểm
là ảnh của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có phép chiếu song song phương , biến
thành
, biến
thành
.
Do là trung điểm của
suy ra
là trung điểm của
vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.
Vậy khẳng định đúng là:
Xác định thiết diện
Cho hình chóp
có đáy
là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng
qua
, song song với
. Thiết diện tạo bởi
và hình chóp là hình gì?
Hình vẽ minh họa
Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.
Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.
Gọi I là giao điểm của a với SD.
Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.
Gọi J lần lượt là giao điểm của b với SC.
Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJ vì GH // IJ //CD.
Mặt phẳng nào song song với (IJK)
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Xét tính đúng sai của mỗi khẳng định
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện
cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
Tính tỉ lệ độ dài
Cho hình hộp
có
là trung điểm của
. Gọi mặt phẳng
đi qua
và song song với
. Giả sử
. Tỉ lệ độ dài của
và
là:
Hình vẽ minh họa:
Gọi trung điểm của lần lượt là
.
Dễ thấy
Xét mặt phẳng , gọi
Xét tam giác và tam giác
ta có:
(đối đỉnh)
(so le trong)
Vậy hay
Tìm khẳng định sai
Chọn khẳng định sai trong các khẳng định sau.
Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”
Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”
Chọn khẳng định đúng
Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Ta có:
Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.
=> Hai đường thẳng AD và BC chéo nhau.
Ghi đáp án vào ô trống
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Tìm khẳng định đúng
Khẳng định nào sau đây là đúng.
Khẳng định đúng là: " Hình biểu diễn của một hình bình hành là một hình bình hành."
Xác định số mặt phẳng thỏa mãn điều kiện
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Xác định số kết luận đúng
Cho hình chóp
có đáy
là hình bình hành. Giả sử
lần lượt là trọng tâm của tam giác
. Cho các khẳng định sau:
i) ![]()
ii) ![]()
iii) ![]()
iv) ![]()
Hỏi có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Gọi lần lượt là trung điểm của AB và CD
Do lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên
Mà
Ta có:
Mà
Vậy có 3 khẳng định đúng.
Chọn khẳng định đúng
Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

Gọi E là trung điểm của AB
Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:
Theo định lí Ta - lét ta có: (1)
Mà (2)
Từ (1) và (2) =>
Chọn phát biểu đúng
Cho hình tứ diện ABCD, phát biểu nào sau đây là đúng?
Phương án "AC và BD cắt nhau" sai vì nếu AC cắt BD thì 4 điểm A, B, C, D đồng phẳng, điều này mẫu thuẫn với A, B, C, D là 4 đỉnh của một tứ diện.
Phương án "AC và BD không có điểm chung" đúng vì nếu chúng có điểm chung thì A, B, C, D không thể là 4 đỉnh của một tứ diện
Phương án "Tồn tại một mặt phẳng chứa AD và BC" sai vì nếu có một mặt phẳng chứa AD và BC thì 4 điểm A, B, C, D đồng phẳng, điều này mâu thuẫn với A, B, C, D là 4 đỉnh của một tứ diện.
Phương án "AB và CD song song với nhau" sai.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: