Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Phương trình, bất phương trình mũ và lôgarit CTST

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Phương trình, bất phương trình mũ và lôgarit sách Chân trời sáng tạo. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm nghiệm phương trình

    Giải phương trình 4^{x^{2} - 2} = 16.

    Hướng dẫn:

    4^{x^{2} - 2} = 16

    \Leftrightarrow x^{2} - 2 =\log_{4}16

    \Leftrightarrow x^{2} = 4

    \Leftrightarrow x = \pm 2

    Vậy phương trình có nghiệm x = \pm
2.

  • Câu 2: Thông hiểu
    Xác định nghiệm phương trình

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Hướng dẫn:

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 3: Vận dụng
    Tìm m để phương trình có hai nghiệm trái dấu.

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Hướng dẫn:

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 4: Nhận biết
    Giải phương trình

    Tìm nghiệm của phương trình \log_{2}(3x - 2) = 3.

    Hướng dẫn:

    Điều kiện xác định 3x - 2 > 0
\Leftrightarrow x > \frac{2}{3}

    \log_{2}(3x - 2) = 3

    \Leftrightarrow 3x - 2 =
2^{3}

    \Leftrightarrow x =
\frac{10}{3}(tm)

    Vậy phương trình có nghiệm x =
\frac{10}{3}.

  • Câu 5: Nhận biết
    Giải phương trình mũ

    Xác định nghiệm của phương trình \left( 7 + 4\sqrt{3} ight)^{2x + 1} = 2 -
\sqrt{3}?

    Hướng dẫn:

    Ta có:

    \left( 7 + 4\sqrt{3} ight)^{2x + 1} =
2 - \sqrt{3}

    \Leftrightarrow 2x + 1 = \log_{7 +4\sqrt{3}}\left( 2 - \sqrt{3} ight)

    \Leftrightarrow 2x + 1 = -
\frac{1}{2}

    \Leftrightarrow x = -
\frac{3}{4}(tm)

    Vậy phương trình có nghiệm là: x = -
\frac{3}{4}

  • Câu 6: Nhận biết
    Giải phương trình

    Tập nghiệm của bất phương trình \log_{0,25}\left( x^{2} - 3x ight) = -1? là:

    Hướng dẫn:

    Điều kiện x^{2} - 3x > 0
\Leftrightarrow x \in ( - \infty;0) \cup (3; + \infty)

    \log_{0,25}\left( x^{2} - 3x ight) = -1

    \Leftrightarrow x^{2} - 3x =
4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = 4(tm) \\
\end{matrix} ight.

    Vậy phương trình có nghiệm x = -1 hoặc x = 4.

  • Câu 7: Nhận biết
    Tìm các nghiệm của phương trình

    Tích tất cả các nghiệm của phương trình 3^{x^{2} + x} = 9 là:

    Hướng dẫn:

    Ta có: 3^{x^{2} + x} = 3^{2}

    \Leftrightarrow x^{2} + x =
2

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix}(tm) ight.

    Vậy tích các nghiệm phương trình là -2

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức A

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Cho bất phương trình: \left( \frac{2}{3} ight)^{2x^{2} + 4x} \leq\left( \frac{3}{2} ight)^{x + 3}. Chọn khẳng định đúng về tập nghiệm của bất phương trình.

    Hướng dẫn:

    Ta có:

    \left( \frac{2}{3} ight)^{2x^{2} + 4x}\leq \left( \frac{3}{2} ight)^{x + 3}

    \Leftrightarrow \left( \frac{2}{3}ight)^{2x^{2} + 4x} \leq \left( \frac{2}{3} ight)^{- x -3}

    \Leftrightarrow 2x^{2} + 4x \geq - x -3

    \Leftrightarrow 2x^{2} + 4x + 3 \geq0

    \Leftrightarrow \left\lbrack\begin{matrix}x \leq - \dfrac{3}{2} \\x \geq - 1 \\\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình là: S= \left( - \infty;\frac{- 3}{2} ight) \cup \lbrack - 1; +\infty)

  • Câu 10: Vận dụng
    Xác định tham số m

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Hướng dẫn:

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 11: Nhận biết
    Giải bất phương trình

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Hướng dẫn:

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 12: Nhận biết
    Giải bất phương trình logarit

    Tìm tập nghiệm của bất phương trình \log_{\frac{1}{2}}(x - 3) \geq \log_{\frac{1}{2}}(9- 2x).

    Hướng dẫn:

    Ta có:

    \log_{\frac{1}{2}}(x - 3) \geq  \log_{\frac{1}{2}}(9 - 2x)

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \leq 9 - 2x \\
x - 3 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < x \leq 4

    Vậy tập nghiệm của bất phương trình là: S
= (3;4brack

  • Câu 13: Nhận biết
    Giải bất phương trình mũ

    Xác định tập nghiệm của bất phương trình \left( \frac{1}{3} ight)^{3x} > \left(
\frac{1}{3} ight)^{2x + 6}.

    Hướng dẫn:

    Ta có: \left( \frac{1}{3} ight)^{3x}
> \left( \frac{1}{3} ight)^{2x + 6} \Leftrightarrow 3x < 2x +
6

    \Leftrightarrow x < 6

    Vậy tập nghiệm bất phương trình là: ( -
\infty;6)

  • Câu 14: Thông hiểu
    Giải bất phương trình

    Tìm tập nghiệm của bất phương trình \frac{{1 - {{\log }_{\frac{1}{2}}}x}}{{\sqrt {2 - 6x} }} < 0.

    Hướng dẫn:

    Điều kiện: 0 < x <\frac{1}{3}

    Bất phương trình đã cho tương đương với 1 - {\log _{\frac{1}{2}}}x < 0 \Leftrightarrow 0 < x < \frac{1}{2}

    Kết hợp điều kiện, suy ra bất phương trình có nghiệm 0 < x < \frac{1}{3}

    Vậy tập nghiệm của bất phương trình là: \left( 0;\frac{1}{3} ight)

  • Câu 15: Thông hiểu
    Tìm x để hàm số có nghĩa

    Điều kiện xác định của hàm số y = \dfrac{1}{\sqrt{\log_{9}\dfrac{2x}{x + 1} -\dfrac{1}{2}}} là:

    Hướng dẫn:

    Điều kiện xác định của hàm số:

    \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  { l o g{ _9}\dfrac{{2x}}{{x + 1}} - \dfrac{1}{2} > 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  {\dfrac{{2x}}{{x + 1}} > 3} 
\end{array}} ight.} ight.

    \Leftrightarrow \frac{2x}{x + 1} > 3
\Leftrightarrow \frac{x + 3}{x + 1} < 0 \Leftrightarrow - 3 < x
< - 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (53%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Chân trời sáng tạo

Xem thêm